Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrpropnb.v |
|- V = ( Vtx ` G ) |
2 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
3 |
1 2
|
rusgrprop0 |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
4 |
|
simp1 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> G e. USGraph ) |
5 |
|
simp2 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> K e. NN0* ) |
6 |
1
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
7 |
6
|
adantlr |
|- ( ( ( G e. USGraph /\ K e. NN0* ) /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) |
8 |
|
eqeq2 |
|- ( K = ( ( VtxDeg ` G ) ` v ) -> ( ( # ` ( G NeighbVtx v ) ) = K <-> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) ) |
9 |
8
|
eqcoms |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` ( G NeighbVtx v ) ) = K <-> ( # ` ( G NeighbVtx v ) ) = ( ( VtxDeg ` G ) ` v ) ) ) |
10 |
7 9
|
syl5ibrcom |
|- ( ( ( G e. USGraph /\ K e. NN0* ) /\ v e. V ) -> ( ( ( VtxDeg ` G ) ` v ) = K -> ( # ` ( G NeighbVtx v ) ) = K ) ) |
11 |
10
|
ralimdva |
|- ( ( G e. USGraph /\ K e. NN0* ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) ) |
12 |
11
|
3impia |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) |
13 |
4 5 12
|
3jca |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) ) |
14 |
3 13
|
syl |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) ) |