Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by GG, 2-Sep-2024)

Ref Expression
Assertion rzal
|- ( A = (/) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 biidd
 |-  ( y = x -> ( F. <-> F. ) )
2 1 eqabbw
 |-  ( A = { y | F. } <-> A. x ( x e. A <-> F. ) )
3 2 biimpi
 |-  ( A = { y | F. } -> A. x ( x e. A <-> F. ) )
4 nbfal
 |-  ( -. x e. A <-> ( x e. A <-> F. ) )
5 pm2.21
 |-  ( -. x e. A -> ( x e. A -> ph ) )
6 4 5 sylbir
 |-  ( ( x e. A <-> F. ) -> ( x e. A -> ph ) )
7 3 6 sylg
 |-  ( A = { y | F. } -> A. x ( x e. A -> ph ) )
8 dfnul4
 |-  (/) = { y | F. }
9 8 eqeq2i
 |-  ( A = (/) <-> A = { y | F. } )
10 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
11 7 9 10 3imtr4i
 |-  ( A = (/) -> A. x e. A ph )