Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rzal
|- ( A = (/) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 dfcleq
 |-  ( A = { y | F. } <-> A. x ( x e. A <-> x e. { y | F. } ) )
2 1 biimpi
 |-  ( A = { y | F. } -> A. x ( x e. A <-> x e. { y | F. } ) )
3 df-clab
 |-  ( x e. { y | F. } <-> [ x / y ] F. )
4 sbv
 |-  ( [ x / y ] F. <-> F. )
5 3 4 bitri
 |-  ( x e. { y | F. } <-> F. )
6 5 bibi2i
 |-  ( ( x e. A <-> x e. { y | F. } ) <-> ( x e. A <-> F. ) )
7 nbfal
 |-  ( -. x e. A <-> ( x e. A <-> F. ) )
8 pm2.21
 |-  ( -. x e. A -> ( x e. A -> ph ) )
9 7 8 sylbir
 |-  ( ( x e. A <-> F. ) -> ( x e. A -> ph ) )
10 6 9 sylbi
 |-  ( ( x e. A <-> x e. { y | F. } ) -> ( x e. A -> ph ) )
11 2 10 sylg
 |-  ( A = { y | F. } -> A. x ( x e. A -> ph ) )
12 dfnul4
 |-  (/) = { y | F. }
13 12 eqeq2i
 |-  ( A = (/) <-> A = { y | F. } )
14 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
15 11 13 14 3imtr4i
 |-  ( A = (/) -> A. x e. A ph )