Metamath Proof Explorer


Theorem rzalf

Description: A version of rzal using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypothesis rzalf.1
|- F/ x A = (/)
Assertion rzalf
|- ( A = (/) -> A. x e. A ph )

Proof

Step Hyp Ref Expression
1 rzalf.1
 |-  F/ x A = (/)
2 ne0i
 |-  ( x e. A -> A =/= (/) )
3 2 necon2bi
 |-  ( A = (/) -> -. x e. A )
4 3 pm2.21d
 |-  ( A = (/) -> ( x e. A -> ph ) )
5 1 4 ralrimi
 |-  ( A = (/) -> A. x e. A ph )