Step |
Hyp |
Ref |
Expression |
1 |
|
rzgrp.r |
|- R = ( RRfld /s ( RRfld ~QG ZZ ) ) |
2 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
3 |
|
zssre |
|- ZZ C_ RR |
4 |
|
resubdrg |
|- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
5 |
4
|
simpli |
|- RR e. ( SubRing ` CCfld ) |
6 |
|
df-refld |
|- RRfld = ( CCfld |`s RR ) |
7 |
6
|
subsubrg |
|- ( RR e. ( SubRing ` CCfld ) -> ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) ) |
8 |
5 7
|
ax-mp |
|- ( ZZ e. ( SubRing ` RRfld ) <-> ( ZZ e. ( SubRing ` CCfld ) /\ ZZ C_ RR ) ) |
9 |
2 3 8
|
mpbir2an |
|- ZZ e. ( SubRing ` RRfld ) |
10 |
|
subrgsubg |
|- ( ZZ e. ( SubRing ` RRfld ) -> ZZ e. ( SubGrp ` RRfld ) ) |
11 |
9 10
|
ax-mp |
|- ZZ e. ( SubGrp ` RRfld ) |
12 |
|
simpl |
|- ( ( x e. RR /\ y e. RR ) -> x e. RR ) |
13 |
12
|
recnd |
|- ( ( x e. RR /\ y e. RR ) -> x e. CC ) |
14 |
|
simpr |
|- ( ( x e. RR /\ y e. RR ) -> y e. RR ) |
15 |
14
|
recnd |
|- ( ( x e. RR /\ y e. RR ) -> y e. CC ) |
16 |
13 15
|
addcomd |
|- ( ( x e. RR /\ y e. RR ) -> ( x + y ) = ( y + x ) ) |
17 |
16
|
eleq1d |
|- ( ( x e. RR /\ y e. RR ) -> ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) |
18 |
17
|
rgen2 |
|- A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) |
19 |
|
rebase |
|- RR = ( Base ` RRfld ) |
20 |
|
replusg |
|- + = ( +g ` RRfld ) |
21 |
19 20
|
isnsg |
|- ( ZZ e. ( NrmSGrp ` RRfld ) <-> ( ZZ e. ( SubGrp ` RRfld ) /\ A. x e. RR A. y e. RR ( ( x + y ) e. ZZ <-> ( y + x ) e. ZZ ) ) ) |
22 |
11 18 21
|
mpbir2an |
|- ZZ e. ( NrmSGrp ` RRfld ) |
23 |
1
|
qusgrp |
|- ( ZZ e. ( NrmSGrp ` RRfld ) -> R e. Grp ) |
24 |
22 23
|
ax-mp |
|- R e. Grp |