Step |
Hyp |
Ref |
Expression |
1 |
|
s1val |
|- ( S e. A -> <" S "> = { <. 0 , S >. } ) |
2 |
|
s1val |
|- ( T e. A -> <" T "> = { <. 0 , T >. } ) |
3 |
1 2
|
eqeqan12d |
|- ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> { <. 0 , S >. } = { <. 0 , T >. } ) ) |
4 |
|
opex |
|- <. 0 , S >. e. _V |
5 |
|
sneqbg |
|- ( <. 0 , S >. e. _V -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) |
6 |
4 5
|
mp1i |
|- ( ( S e. A /\ T e. A ) -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) |
7 |
|
0z |
|- 0 e. ZZ |
8 |
|
eqid |
|- 0 = 0 |
9 |
|
opthg |
|- ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> ( 0 = 0 /\ S = T ) ) ) |
10 |
9
|
baibd |
|- ( ( ( 0 e. ZZ /\ S e. A ) /\ 0 = 0 ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
11 |
8 10
|
mpan2 |
|- ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
12 |
7 11
|
mpan |
|- ( S e. A -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
13 |
12
|
adantr |
|- ( ( S e. A /\ T e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) |
14 |
3 6 13
|
3bitrd |
|- ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> S = T ) ) |