| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s1val |  |-  ( S e. A -> <" S "> = { <. 0 , S >. } ) | 
						
							| 2 |  | s1val |  |-  ( T e. A -> <" T "> = { <. 0 , T >. } ) | 
						
							| 3 | 1 2 | eqeqan12d |  |-  ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> { <. 0 , S >. } = { <. 0 , T >. } ) ) | 
						
							| 4 |  | opex |  |-  <. 0 , S >. e. _V | 
						
							| 5 |  | sneqbg |  |-  ( <. 0 , S >. e. _V -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) | 
						
							| 6 | 4 5 | mp1i |  |-  ( ( S e. A /\ T e. A ) -> ( { <. 0 , S >. } = { <. 0 , T >. } <-> <. 0 , S >. = <. 0 , T >. ) ) | 
						
							| 7 |  | 0z |  |-  0 e. ZZ | 
						
							| 8 |  | eqid |  |-  0 = 0 | 
						
							| 9 |  | opthg |  |-  ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> ( 0 = 0 /\ S = T ) ) ) | 
						
							| 10 | 9 | baibd |  |-  ( ( ( 0 e. ZZ /\ S e. A ) /\ 0 = 0 ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) | 
						
							| 11 | 8 10 | mpan2 |  |-  ( ( 0 e. ZZ /\ S e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) | 
						
							| 12 | 7 11 | mpan |  |-  ( S e. A -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( S e. A /\ T e. A ) -> ( <. 0 , S >. = <. 0 , T >. <-> S = T ) ) | 
						
							| 14 | 3 6 13 | 3bitrd |  |-  ( ( S e. A /\ T e. A ) -> ( <" S "> = <" T "> <-> S = T ) ) |