Step |
Hyp |
Ref |
Expression |
1 |
|
s1val |
|- ( S e. A -> <" S "> = { <. 0 , S >. } ) |
2 |
|
0cn |
|- 0 e. CC |
3 |
|
xpsng |
|- ( ( 0 e. CC /\ S e. A ) -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
4 |
2 3
|
mpan |
|- ( S e. A -> ( { 0 } X. { S } ) = { <. 0 , S >. } ) |
5 |
1 4
|
eqtr4d |
|- ( S e. A -> <" S "> = ( { 0 } X. { S } ) ) |
6 |
5
|
adantr |
|- ( ( S e. A /\ F : A --> B ) -> <" S "> = ( { 0 } X. { S } ) ) |
7 |
6
|
coeq2d |
|- ( ( S e. A /\ F : A --> B ) -> ( F o. <" S "> ) = ( F o. ( { 0 } X. { S } ) ) ) |
8 |
|
fvex |
|- ( F ` S ) e. _V |
9 |
|
s1val |
|- ( ( F ` S ) e. _V -> <" ( F ` S ) "> = { <. 0 , ( F ` S ) >. } ) |
10 |
8 9
|
ax-mp |
|- <" ( F ` S ) "> = { <. 0 , ( F ` S ) >. } |
11 |
|
c0ex |
|- 0 e. _V |
12 |
11 8
|
xpsn |
|- ( { 0 } X. { ( F ` S ) } ) = { <. 0 , ( F ` S ) >. } |
13 |
10 12
|
eqtr4i |
|- <" ( F ` S ) "> = ( { 0 } X. { ( F ` S ) } ) |
14 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
15 |
|
id |
|- ( S e. A -> S e. A ) |
16 |
|
fcoconst |
|- ( ( F Fn A /\ S e. A ) -> ( F o. ( { 0 } X. { S } ) ) = ( { 0 } X. { ( F ` S ) } ) ) |
17 |
14 15 16
|
syl2anr |
|- ( ( S e. A /\ F : A --> B ) -> ( F o. ( { 0 } X. { S } ) ) = ( { 0 } X. { ( F ` S ) } ) ) |
18 |
13 17
|
eqtr4id |
|- ( ( S e. A /\ F : A --> B ) -> <" ( F ` S ) "> = ( F o. ( { 0 } X. { S } ) ) ) |
19 |
7 18
|
eqtr4d |
|- ( ( S e. A /\ F : A --> B ) -> ( F o. <" S "> ) = <" ( F ` S ) "> ) |