Metamath Proof Explorer


Theorem s1eq

Description: Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1eq
|- ( A = B -> <" A "> = <" B "> )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( A = B -> ( _I ` A ) = ( _I ` B ) )
2 1 opeq2d
 |-  ( A = B -> <. 0 , ( _I ` A ) >. = <. 0 , ( _I ` B ) >. )
3 2 sneqd
 |-  ( A = B -> { <. 0 , ( _I ` A ) >. } = { <. 0 , ( _I ` B ) >. } )
4 df-s1
 |-  <" A "> = { <. 0 , ( _I ` A ) >. }
5 df-s1
 |-  <" B "> = { <. 0 , ( _I ` B ) >. }
6 3 4 5 3eqtr4g
 |-  ( A = B -> <" A "> = <" B "> )