Metamath Proof Explorer


Theorem s1s5

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s5
|- <" A B C D E F "> = ( <" A "> ++ <" B C D E F "> )

Proof

Step Hyp Ref Expression
1 df-s5
 |-  <" B C D E F "> = ( <" B C D E "> ++ <" F "> )
2 s1cli
 |-  <" A "> e. Word _V
3 s4cli
 |-  <" B C D E "> e. Word _V
4 df-s6
 |-  <" A B C D E F "> = ( <" A B C D E "> ++ <" F "> )
5 s1s4
 |-  <" A B C D E "> = ( <" A "> ++ <" B C D E "> )
6 1 2 3 4 5 cats1cat
 |-  <" A B C D E F "> = ( <" A "> ++ <" B C D E F "> )