Metamath Proof Explorer


Theorem s1s6

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s1s6
|- <" A B C D E F G "> = ( <" A "> ++ <" B C D E F G "> )

Proof

Step Hyp Ref Expression
1 df-s6
 |-  <" B C D E F G "> = ( <" B C D E F "> ++ <" G "> )
2 s1cli
 |-  <" A "> e. Word _V
3 s5cli
 |-  <" B C D E F "> e. Word _V
4 df-s7
 |-  <" A B C D E F G "> = ( <" A B C D E F "> ++ <" G "> )
5 s1s5
 |-  <" A B C D E F "> = ( <" A "> ++ <" B C D E F "> )
6 1 2 3 4 5 cats1cat
 |-  <" A B C D E F G "> = ( <" A "> ++ <" B C D E F G "> )