Step |
Hyp |
Ref |
Expression |
1 |
|
s2co.1 |
|- ( ph -> F : X --> Y ) |
2 |
|
s2co.2 |
|- ( ph -> A e. X ) |
3 |
|
s2co.3 |
|- ( ph -> B e. X ) |
4 |
|
df-s2 |
|- <" A B "> = ( <" A "> ++ <" B "> ) |
5 |
2
|
s1cld |
|- ( ph -> <" A "> e. Word X ) |
6 |
|
s1co |
|- ( ( A e. X /\ F : X --> Y ) -> ( F o. <" A "> ) = <" ( F ` A ) "> ) |
7 |
2 1 6
|
syl2anc |
|- ( ph -> ( F o. <" A "> ) = <" ( F ` A ) "> ) |
8 |
|
df-s2 |
|- <" ( F ` A ) ( F ` B ) "> = ( <" ( F ` A ) "> ++ <" ( F ` B ) "> ) |
9 |
4 5 3 1 7 8
|
cats1co |
|- ( ph -> ( F o. <" A B "> ) = <" ( F ` A ) ( F ` B ) "> ) |