Description: Alternate version of s2dm , having a shorter proof, but requiring that A and B are sets. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | s2dmALT | |- ( ( A e. S /\ B e. S ) -> dom <" A B "> = { 0 , 1 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2prop | |- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
|
2 | 1 | dmeqd | |- ( ( A e. S /\ B e. S ) -> dom <" A B "> = dom { <. 0 , A >. , <. 1 , B >. } ) |
3 | dmpropg | |- ( ( A e. S /\ B e. S ) -> dom { <. 0 , A >. , <. 1 , B >. } = { 0 , 1 } ) |
|
4 | 2 3 | eqtrd | |- ( ( A e. S /\ B e. S ) -> dom <" A B "> = { 0 , 1 } ) |