Metamath Proof Explorer


Theorem s2dmALT

Description: Alternate version of s2dm , having a shorter proof, but requiring that A and B are sets. (Contributed by AV, 9-Jan-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion s2dmALT
|- ( ( A e. S /\ B e. S ) -> dom <" A B "> = { 0 , 1 } )

Proof

Step Hyp Ref Expression
1 s2prop
 |-  ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } )
2 1 dmeqd
 |-  ( ( A e. S /\ B e. S ) -> dom <" A B "> = dom { <. 0 , A >. , <. 1 , B >. } )
3 dmpropg
 |-  ( ( A e. S /\ B e. S ) -> dom { <. 0 , A >. , <. 1 , B >. } = { 0 , 1 } )
4 2 3 eqtrd
 |-  ( ( A e. S /\ B e. S ) -> dom <" A B "> = { 0 , 1 } )