Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon2.c |
|- C = ( ClWWalksNOn ` G ) |
2 |
|
clwwlknon2x.v |
|- V = ( Vtx ` G ) |
3 |
|
clwwlknon2x.e |
|- E = ( Edg ` G ) |
4 |
|
s2cl |
|- ( ( X e. V /\ Y e. V ) -> <" X Y "> e. Word V ) |
5 |
4
|
3adant3 |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> <" X Y "> e. Word V ) |
6 |
|
s2len |
|- ( # ` <" X Y "> ) = 2 |
7 |
6
|
a1i |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( # ` <" X Y "> ) = 2 ) |
8 |
|
s2fv0 |
|- ( X e. V -> ( <" X Y "> ` 0 ) = X ) |
9 |
8
|
adantr |
|- ( ( X e. V /\ Y e. V ) -> ( <" X Y "> ` 0 ) = X ) |
10 |
|
s2fv1 |
|- ( Y e. V -> ( <" X Y "> ` 1 ) = Y ) |
11 |
10
|
adantl |
|- ( ( X e. V /\ Y e. V ) -> ( <" X Y "> ` 1 ) = Y ) |
12 |
9 11
|
preq12d |
|- ( ( X e. V /\ Y e. V ) -> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } = { X , Y } ) |
13 |
12
|
eqcomd |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } = { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } ) |
14 |
13
|
eleq1d |
|- ( ( X e. V /\ Y e. V ) -> ( { X , Y } e. E <-> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) ) |
15 |
14
|
biimp3a |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) |
16 |
9
|
3adant3 |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( <" X Y "> ` 0 ) = X ) |
17 |
7 15 16
|
3jca |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) |
18 |
|
fveqeq2 |
|- ( w = <" X Y "> -> ( ( # ` w ) = 2 <-> ( # ` <" X Y "> ) = 2 ) ) |
19 |
|
fveq1 |
|- ( w = <" X Y "> -> ( w ` 0 ) = ( <" X Y "> ` 0 ) ) |
20 |
|
fveq1 |
|- ( w = <" X Y "> -> ( w ` 1 ) = ( <" X Y "> ` 1 ) ) |
21 |
19 20
|
preq12d |
|- ( w = <" X Y "> -> { ( w ` 0 ) , ( w ` 1 ) } = { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } ) |
22 |
21
|
eleq1d |
|- ( w = <" X Y "> -> ( { ( w ` 0 ) , ( w ` 1 ) } e. E <-> { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E ) ) |
23 |
19
|
eqeq1d |
|- ( w = <" X Y "> -> ( ( w ` 0 ) = X <-> ( <" X Y "> ` 0 ) = X ) ) |
24 |
18 22 23
|
3anbi123d |
|- ( w = <" X Y "> -> ( ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) <-> ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) ) |
25 |
1 2 3
|
clwwlknon2x |
|- ( X C 2 ) = { w e. Word V | ( ( # ` w ) = 2 /\ { ( w ` 0 ) , ( w ` 1 ) } e. E /\ ( w ` 0 ) = X ) } |
26 |
24 25
|
elrab2 |
|- ( <" X Y "> e. ( X C 2 ) <-> ( <" X Y "> e. Word V /\ ( ( # ` <" X Y "> ) = 2 /\ { ( <" X Y "> ` 0 ) , ( <" X Y "> ` 1 ) } e. E /\ ( <" X Y "> ` 0 ) = X ) ) ) |
27 |
5 17 26
|
sylanbrc |
|- ( ( X e. V /\ Y e. V /\ { X , Y } e. E ) -> <" X Y "> e. ( X C 2 ) ) |