Step |
Hyp |
Ref |
Expression |
1 |
|
df-s2 |
|- <" A B "> = ( <" A "> ++ <" B "> ) |
2 |
|
s1cl |
|- ( A e. S -> <" A "> e. Word S ) |
3 |
|
cats1un |
|- ( ( <" A "> e. Word S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) ) |
4 |
2 3
|
sylan |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) ) |
5 |
|
s1val |
|- ( A e. S -> <" A "> = { <. 0 , A >. } ) |
6 |
5
|
adantr |
|- ( ( A e. S /\ B e. S ) -> <" A "> = { <. 0 , A >. } ) |
7 |
6
|
uneq1d |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> u. { <. ( # ` <" A "> ) , B >. } ) = ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) ) |
8 |
|
df-pr |
|- { <. 0 , A >. , <. ( # ` <" A "> ) , B >. } = ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) |
9 |
|
s1len |
|- ( # ` <" A "> ) = 1 |
10 |
9
|
a1i |
|- ( ( A e. S /\ B e. S ) -> ( # ` <" A "> ) = 1 ) |
11 |
10
|
opeq1d |
|- ( ( A e. S /\ B e. S ) -> <. ( # ` <" A "> ) , B >. = <. 1 , B >. ) |
12 |
11
|
preq2d |
|- ( ( A e. S /\ B e. S ) -> { <. 0 , A >. , <. ( # ` <" A "> ) , B >. } = { <. 0 , A >. , <. 1 , B >. } ) |
13 |
8 12
|
eqtr3id |
|- ( ( A e. S /\ B e. S ) -> ( { <. 0 , A >. } u. { <. ( # ` <" A "> ) , B >. } ) = { <. 0 , A >. , <. 1 , B >. } ) |
14 |
4 7 13
|
3eqtrd |
|- ( ( A e. S /\ B e. S ) -> ( <" A "> ++ <" B "> ) = { <. 0 , A >. , <. 1 , B >. } ) |
15 |
1 14
|
eqtrid |
|- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |