| Step | Hyp | Ref | Expression | 
						
							| 1 |  | s2rn.i |  |-  ( ph -> I e. D ) | 
						
							| 2 |  | s2rn.j |  |-  ( ph -> J e. D ) | 
						
							| 3 |  | df-s2 |  |-  <" I J "> = ( <" I "> ++ <" J "> ) | 
						
							| 4 | 3 | a1i |  |-  ( ph -> <" I J "> = ( <" I "> ++ <" J "> ) ) | 
						
							| 5 | 4 | rneqd |  |-  ( ph -> ran <" I J "> = ran ( <" I "> ++ <" J "> ) ) | 
						
							| 6 |  | s1cli |  |-  <" I "> e. Word _V | 
						
							| 7 |  | s1cli |  |-  <" J "> e. Word _V | 
						
							| 8 | 6 7 | pm3.2i |  |-  ( <" I "> e. Word _V /\ <" J "> e. Word _V ) | 
						
							| 9 |  | ccatrn |  |-  ( ( <" I "> e. Word _V /\ <" J "> e. Word _V ) -> ran ( <" I "> ++ <" J "> ) = ( ran <" I "> u. ran <" J "> ) ) | 
						
							| 10 | 8 9 | mp1i |  |-  ( ph -> ran ( <" I "> ++ <" J "> ) = ( ran <" I "> u. ran <" J "> ) ) | 
						
							| 11 |  | s1rn |  |-  ( I e. D -> ran <" I "> = { I } ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ran <" I "> = { I } ) | 
						
							| 13 |  | s1rn |  |-  ( J e. D -> ran <" J "> = { J } ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> ran <" J "> = { J } ) | 
						
							| 15 | 12 14 | uneq12d |  |-  ( ph -> ( ran <" I "> u. ran <" J "> ) = ( { I } u. { J } ) ) | 
						
							| 16 |  | df-pr |  |-  { I , J } = ( { I } u. { J } ) | 
						
							| 17 | 15 16 | eqtr4di |  |-  ( ph -> ( ran <" I "> u. ran <" J "> ) = { I , J } ) | 
						
							| 18 | 5 10 17 | 3eqtrd |  |-  ( ph -> ran <" I J "> = { I , J } ) |