Metamath Proof Explorer


Theorem s2s5

Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021)

Ref Expression
Assertion s2s5
|- <" A B C D E F G "> = ( <" A B "> ++ <" C D E F G "> )

Proof

Step Hyp Ref Expression
1 s1s2
 |-  <" A B C "> = ( <" A "> ++ <" B C "> )
2 1 eqcomi
 |-  ( <" A "> ++ <" B C "> ) = <" A B C ">
3 2 oveq1i
 |-  ( ( <" A "> ++ <" B C "> ) ++ <" D E F G "> ) = ( <" A B C "> ++ <" D E F G "> )
4 s1cli
 |-  <" A "> e. Word _V
5 s4cli
 |-  <" D E F G "> e. Word _V
6 df-s2
 |-  <" A B "> = ( <" A "> ++ <" B "> )
7 s1s4
 |-  <" C D E F G "> = ( <" C "> ++ <" D E F G "> )
8 4 5 6 7 cats2cat
 |-  ( <" A B "> ++ <" C D E F G "> ) = ( ( <" A "> ++ <" B C "> ) ++ <" D E F G "> )
9 s3s4
 |-  <" A B C D E F G "> = ( <" A B C "> ++ <" D E F G "> )
10 3 8 9 3eqtr4ri
 |-  <" A B C D E F G "> = ( <" A B "> ++ <" C D E F G "> )