Metamath Proof Explorer


Theorem s3clhash

Description: Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023)

Ref Expression
Assertion s3clhash
|- <" I J K "> e. ( `' # " { 3 } )

Proof

Step Hyp Ref Expression
1 s3cli
 |-  <" I J K "> e. Word _V
2 1 elexi
 |-  <" I J K "> e. _V
3 s3len
 |-  ( # ` <" I J K "> ) = 3
4 hashf
 |-  # : _V --> ( NN0 u. { +oo } )
5 ffn
 |-  ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V )
6 fniniseg
 |-  ( # Fn _V -> ( <" I J K "> e. ( `' # " { 3 } ) <-> ( <" I J K "> e. _V /\ ( # ` <" I J K "> ) = 3 ) ) )
7 4 5 6 mp2b
 |-  ( <" I J K "> e. ( `' # " { 3 } ) <-> ( <" I J K "> e. _V /\ ( # ` <" I J K "> ) = 3 ) )
8 2 3 7 mpbir2an
 |-  <" I J K "> e. ( `' # " { 3 } )