Step |
Hyp |
Ref |
Expression |
1 |
|
s3f1.i |
|- ( ph -> I e. D ) |
2 |
|
s3f1.j |
|- ( ph -> J e. D ) |
3 |
|
s3f1.k |
|- ( ph -> K e. D ) |
4 |
|
s3f1.1 |
|- ( ph -> I =/= J ) |
5 |
|
s3f1.2 |
|- ( ph -> J =/= K ) |
6 |
|
s3f1.3 |
|- ( ph -> K =/= I ) |
7 |
1 2 3
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
8 |
|
wrdf |
|- ( <" I J K "> e. Word D -> <" I J K "> : ( 0 ..^ ( # ` <" I J K "> ) ) --> D ) |
9 |
7 8
|
syl |
|- ( ph -> <" I J K "> : ( 0 ..^ ( # ` <" I J K "> ) ) --> D ) |
10 |
9
|
ffdmd |
|- ( ph -> <" I J K "> : dom <" I J K "> --> D ) |
11 |
|
simplr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 0 ) -> i = 0 ) |
12 |
|
simpr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 0 ) -> j = 0 ) |
13 |
11 12
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 0 ) -> i = j ) |
14 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
15 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> i = 0 ) |
16 |
15
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` 0 ) ) |
17 |
|
s3fv0 |
|- ( I e. D -> ( <" I J K "> ` 0 ) = I ) |
18 |
1 17
|
syl |
|- ( ph -> ( <" I J K "> ` 0 ) = I ) |
19 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> ( <" I J K "> ` 0 ) = I ) |
20 |
16 19
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> ( <" I J K "> ` i ) = I ) |
21 |
20
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> ( <" I J K "> ` i ) = I ) |
22 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 1 ) -> j = 1 ) |
23 |
22
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 1 ) -> ( <" I J K "> ` j ) = ( <" I J K "> ` 1 ) ) |
24 |
|
s3fv1 |
|- ( J e. D -> ( <" I J K "> ` 1 ) = J ) |
25 |
2 24
|
syl |
|- ( ph -> ( <" I J K "> ` 1 ) = J ) |
26 |
25
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 1 ) -> ( <" I J K "> ` 1 ) = J ) |
27 |
23 26
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 1 ) -> ( <" I J K "> ` j ) = J ) |
28 |
27
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> ( <" I J K "> ` j ) = J ) |
29 |
14 21 28
|
3eqtr3d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> I = J ) |
30 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> I =/= J ) |
31 |
29 30
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 1 ) -> i = j ) |
32 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
33 |
20
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> ( <" I J K "> ` i ) = I ) |
34 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 2 ) -> j = 2 ) |
35 |
34
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 2 ) -> ( <" I J K "> ` j ) = ( <" I J K "> ` 2 ) ) |
36 |
|
s3fv2 |
|- ( K e. D -> ( <" I J K "> ` 2 ) = K ) |
37 |
3 36
|
syl |
|- ( ph -> ( <" I J K "> ` 2 ) = K ) |
38 |
37
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 2 ) -> ( <" I J K "> ` 2 ) = K ) |
39 |
35 38
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 2 ) -> ( <" I J K "> ` j ) = K ) |
40 |
39
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> ( <" I J K "> ` j ) = K ) |
41 |
32 33 40
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> K = I ) |
42 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> K =/= I ) |
43 |
41 42
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) /\ j = 2 ) -> i = j ) |
44 |
|
wrddm |
|- ( <" I J K "> e. Word D -> dom <" I J K "> = ( 0 ..^ ( # ` <" I J K "> ) ) ) |
45 |
7 44
|
syl |
|- ( ph -> dom <" I J K "> = ( 0 ..^ ( # ` <" I J K "> ) ) ) |
46 |
|
s3len |
|- ( # ` <" I J K "> ) = 3 |
47 |
46
|
oveq2i |
|- ( 0 ..^ ( # ` <" I J K "> ) ) = ( 0 ..^ 3 ) |
48 |
|
fzo0to3tp |
|- ( 0 ..^ 3 ) = { 0 , 1 , 2 } |
49 |
47 48
|
eqtri |
|- ( 0 ..^ ( # ` <" I J K "> ) ) = { 0 , 1 , 2 } |
50 |
45 49
|
eqtrdi |
|- ( ph -> dom <" I J K "> = { 0 , 1 , 2 } ) |
51 |
50
|
eleq2d |
|- ( ph -> ( j e. dom <" I J K "> <-> j e. { 0 , 1 , 2 } ) ) |
52 |
51
|
biimpa |
|- ( ( ph /\ j e. dom <" I J K "> ) -> j e. { 0 , 1 , 2 } ) |
53 |
|
vex |
|- j e. _V |
54 |
53
|
eltp |
|- ( j e. { 0 , 1 , 2 } <-> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
55 |
52 54
|
sylib |
|- ( ( ph /\ j e. dom <" I J K "> ) -> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
56 |
55
|
adantlr |
|- ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) -> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
57 |
56
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
58 |
13 31 43 57
|
mpjao3dan |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 0 ) -> i = j ) |
59 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
60 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> i = 1 ) |
61 |
60
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` 1 ) ) |
62 |
25
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> ( <" I J K "> ` 1 ) = J ) |
63 |
61 62
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> ( <" I J K "> ` i ) = J ) |
64 |
63
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> ( <" I J K "> ` i ) = J ) |
65 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 0 ) -> j = 0 ) |
66 |
65
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 0 ) -> ( <" I J K "> ` j ) = ( <" I J K "> ` 0 ) ) |
67 |
18
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 0 ) -> ( <" I J K "> ` 0 ) = I ) |
68 |
66 67
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ j = 0 ) -> ( <" I J K "> ` j ) = I ) |
69 |
68
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> ( <" I J K "> ` j ) = I ) |
70 |
59 64 69
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> I = J ) |
71 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> I =/= J ) |
72 |
70 71
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 0 ) -> i = j ) |
73 |
|
simplr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 1 ) -> i = 1 ) |
74 |
|
simpr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 1 ) -> j = 1 ) |
75 |
73 74
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 1 ) -> i = j ) |
76 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
77 |
63
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> ( <" I J K "> ` i ) = J ) |
78 |
39
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> ( <" I J K "> ` j ) = K ) |
79 |
76 77 78
|
3eqtr3d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> J = K ) |
80 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> J =/= K ) |
81 |
79 80
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) /\ j = 2 ) -> i = j ) |
82 |
56
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
83 |
72 75 81 82
|
mpjao3dan |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 1 ) -> i = j ) |
84 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
85 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> i = 2 ) |
86 |
85
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` 2 ) ) |
87 |
37
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> ( <" I J K "> ` 2 ) = K ) |
88 |
86 87
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> ( <" I J K "> ` i ) = K ) |
89 |
88
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> ( <" I J K "> ` i ) = K ) |
90 |
68
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> ( <" I J K "> ` j ) = I ) |
91 |
84 89 90
|
3eqtr3d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> K = I ) |
92 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> K =/= I ) |
93 |
91 92
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 0 ) -> i = j ) |
94 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) |
95 |
88
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> ( <" I J K "> ` i ) = K ) |
96 |
27
|
adantlr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> ( <" I J K "> ` j ) = J ) |
97 |
94 95 96
|
3eqtr3rd |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> J = K ) |
98 |
5
|
ad5antr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> J =/= K ) |
99 |
97 98
|
pm2.21ddne |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 1 ) -> i = j ) |
100 |
|
simplr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 2 ) -> i = 2 ) |
101 |
|
simpr |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 2 ) -> j = 2 ) |
102 |
100 101
|
eqtr4d |
|- ( ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) /\ j = 2 ) -> i = j ) |
103 |
56
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> ( j = 0 \/ j = 1 \/ j = 2 ) ) |
104 |
93 99 102 103
|
mpjao3dan |
|- ( ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) /\ i = 2 ) -> i = j ) |
105 |
50
|
eleq2d |
|- ( ph -> ( i e. dom <" I J K "> <-> i e. { 0 , 1 , 2 } ) ) |
106 |
105
|
biimpa |
|- ( ( ph /\ i e. dom <" I J K "> ) -> i e. { 0 , 1 , 2 } ) |
107 |
|
vex |
|- i e. _V |
108 |
107
|
eltp |
|- ( i e. { 0 , 1 , 2 } <-> ( i = 0 \/ i = 1 \/ i = 2 ) ) |
109 |
106 108
|
sylib |
|- ( ( ph /\ i e. dom <" I J K "> ) -> ( i = 0 \/ i = 1 \/ i = 2 ) ) |
110 |
109
|
ad2antrr |
|- ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) -> ( i = 0 \/ i = 1 \/ i = 2 ) ) |
111 |
58 83 104 110
|
mpjao3dan |
|- ( ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) /\ ( <" I J K "> ` i ) = ( <" I J K "> ` j ) ) -> i = j ) |
112 |
111
|
ex |
|- ( ( ( ph /\ i e. dom <" I J K "> ) /\ j e. dom <" I J K "> ) -> ( ( <" I J K "> ` i ) = ( <" I J K "> ` j ) -> i = j ) ) |
113 |
112
|
anasss |
|- ( ( ph /\ ( i e. dom <" I J K "> /\ j e. dom <" I J K "> ) ) -> ( ( <" I J K "> ` i ) = ( <" I J K "> ` j ) -> i = j ) ) |
114 |
113
|
ralrimivva |
|- ( ph -> A. i e. dom <" I J K "> A. j e. dom <" I J K "> ( ( <" I J K "> ` i ) = ( <" I J K "> ` j ) -> i = j ) ) |
115 |
|
dff13 |
|- ( <" I J K "> : dom <" I J K "> -1-1-> D <-> ( <" I J K "> : dom <" I J K "> --> D /\ A. i e. dom <" I J K "> A. j e. dom <" I J K "> ( ( <" I J K "> ` i ) = ( <" I J K "> ` j ) -> i = j ) ) ) |
116 |
10 114 115
|
sylanbrc |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |