Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
|- ( c = d -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
2 |
1
|
a1d |
|- ( c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) ) |
3 |
|
s3cli |
|- <" A B c "> e. Word _V |
4 |
|
elex |
|- ( A e. X -> A e. _V ) |
5 |
|
elex |
|- ( B e. Y -> B e. _V ) |
6 |
4 5
|
anim12i |
|- ( ( A e. X /\ B e. Y ) -> ( A e. _V /\ B e. _V ) ) |
7 |
|
elex |
|- ( d e. Z -> d e. _V ) |
8 |
7
|
adantl |
|- ( ( c e. Z /\ d e. Z ) -> d e. _V ) |
9 |
6 8
|
anim12i |
|- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( ( A e. _V /\ B e. _V ) /\ d e. _V ) ) |
10 |
|
df-3an |
|- ( ( A e. _V /\ B e. _V /\ d e. _V ) <-> ( ( A e. _V /\ B e. _V ) /\ d e. _V ) ) |
11 |
9 10
|
sylibr |
|- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( A e. _V /\ B e. _V /\ d e. _V ) ) |
12 |
|
eqwrds3 |
|- ( ( <" A B c "> e. Word _V /\ ( A e. _V /\ B e. _V /\ d e. _V ) ) -> ( <" A B c "> = <" A B d "> <-> ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) ) ) |
13 |
3 11 12
|
sylancr |
|- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( <" A B c "> = <" A B d "> <-> ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) ) ) |
14 |
|
s3fv2 |
|- ( c e. _V -> ( <" A B c "> ` 2 ) = c ) |
15 |
14
|
elv |
|- ( <" A B c "> ` 2 ) = c |
16 |
|
simp3 |
|- ( ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) -> ( <" A B c "> ` 2 ) = d ) |
17 |
15 16
|
eqtr3id |
|- ( ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) -> c = d ) |
18 |
17
|
adantl |
|- ( ( ( # ` <" A B c "> ) = 3 /\ ( ( <" A B c "> ` 0 ) = A /\ ( <" A B c "> ` 1 ) = B /\ ( <" A B c "> ` 2 ) = d ) ) -> c = d ) |
19 |
13 18
|
syl6bi |
|- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( <" A B c "> = <" A B d "> -> c = d ) ) |
20 |
19
|
con3rr3 |
|- ( -. c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> -. <" A B c "> = <" A B d "> ) ) |
21 |
20
|
imp |
|- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> -. <" A B c "> = <" A B d "> ) |
22 |
21
|
neqned |
|- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> <" A B c "> =/= <" A B d "> ) |
23 |
|
disjsn2 |
|- ( <" A B c "> =/= <" A B d "> -> ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) |
24 |
22 23
|
syl |
|- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) |
25 |
24
|
olcd |
|- ( ( -. c = d /\ ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
26 |
25
|
ex |
|- ( -. c = d -> ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) ) |
27 |
2 26
|
pm2.61i |
|- ( ( ( A e. X /\ B e. Y ) /\ ( c e. Z /\ d e. Z ) ) -> ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
28 |
27
|
ralrimivva |
|- ( ( A e. X /\ B e. Y ) -> A. c e. Z A. d e. Z ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
29 |
|
eqidd |
|- ( c = d -> A = A ) |
30 |
|
eqidd |
|- ( c = d -> B = B ) |
31 |
|
id |
|- ( c = d -> c = d ) |
32 |
29 30 31
|
s3eqd |
|- ( c = d -> <" A B c "> = <" A B d "> ) |
33 |
32
|
sneqd |
|- ( c = d -> { <" A B c "> } = { <" A B d "> } ) |
34 |
33
|
disjor |
|- ( Disj_ c e. Z { <" A B c "> } <-> A. c e. Z A. d e. Z ( c = d \/ ( { <" A B c "> } i^i { <" A B d "> } ) = (/) ) ) |
35 |
28 34
|
sylibr |
|- ( ( A e. X /\ B e. Y ) -> Disj_ c e. Z { <" A B c "> } ) |