Step |
Hyp |
Ref |
Expression |
1 |
|
s3wwlks2on.v |
|- V = ( Vtx ` G ) |
2 |
|
wwlknon |
|- ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) |
3 |
2
|
a1i |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) |
4 |
|
3anass |
|- ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) |
5 |
|
s3fv0 |
|- ( A e. V -> ( <" A B C "> ` 0 ) = A ) |
6 |
|
s3fv2 |
|- ( C e. V -> ( <" A B C "> ` 2 ) = C ) |
7 |
5 6
|
anim12i |
|- ( ( A e. V /\ C e. V ) -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) |
8 |
7
|
3adant1 |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) |
9 |
8
|
biantrud |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( 2 WWalksN G ) <-> ( <" A B C "> e. ( 2 WWalksN G ) /\ ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) ) ) ) |
10 |
4 9
|
bitr4id |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( ( <" A B C "> e. ( 2 WWalksN G ) /\ ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 2 ) = C ) <-> <" A B C "> e. ( 2 WWalksN G ) ) ) |
11 |
|
wlklnwwlknupgr |
|- ( G e. UPGraph -> ( E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) <-> <" A B C "> e. ( 2 WWalksN G ) ) ) |
12 |
11
|
bicomd |
|- ( G e. UPGraph -> ( <" A B C "> e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( 2 WWalksN G ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |
14 |
3 10 13
|
3bitrd |
|- ( ( G e. UPGraph /\ A e. V /\ C e. V ) -> ( <" A B C "> e. ( A ( 2 WWalksNOn G ) C ) <-> E. f ( f ( Walks ` G ) <" A B C "> /\ ( # ` f ) = 2 ) ) ) |