Metamath Proof Explorer


Theorem s4cld

Description: A length 4 string is a word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2cld.1
|- ( ph -> A e. X )
s2cld.2
|- ( ph -> B e. X )
s3cld.3
|- ( ph -> C e. X )
s4cld.4
|- ( ph -> D e. X )
Assertion s4cld
|- ( ph -> <" A B C D "> e. Word X )

Proof

Step Hyp Ref Expression
1 s2cld.1
 |-  ( ph -> A e. X )
2 s2cld.2
 |-  ( ph -> B e. X )
3 s3cld.3
 |-  ( ph -> C e. X )
4 s4cld.4
 |-  ( ph -> D e. X )
5 df-s4
 |-  <" A B C D "> = ( <" A B C "> ++ <" D "> )
6 1 2 3 s3cld
 |-  ( ph -> <" A B C "> e. Word X )
7 5 6 4 cats1cld
 |-  ( ph -> <" A B C D "> e. Word X )