Step |
Hyp |
Ref |
Expression |
1 |
|
df-s4 |
|- <" A B C D "> = ( <" A B C "> ++ <" D "> ) |
2 |
|
simpl |
|- ( ( A e. S /\ B e. S ) -> A e. S ) |
3 |
2
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> A e. S ) |
4 |
|
simpr |
|- ( ( A e. S /\ B e. S ) -> B e. S ) |
5 |
4
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> B e. S ) |
6 |
|
simpl |
|- ( ( C e. S /\ D e. S ) -> C e. S ) |
7 |
6
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> C e. S ) |
8 |
3 5 7
|
s3cld |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> e. Word S ) |
9 |
|
simpr |
|- ( ( C e. S /\ D e. S ) -> D e. S ) |
10 |
9
|
adantl |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> D e. S ) |
11 |
|
cats1un |
|- ( ( <" A B C "> e. Word S /\ D e. S ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
12 |
8 10 11
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
13 |
|
df-s3 |
|- <" A B C "> = ( <" A B "> ++ <" C "> ) |
14 |
|
s2cl |
|- ( ( A e. S /\ B e. S ) -> <" A B "> e. Word S ) |
15 |
14
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> e. Word S ) |
16 |
|
cats1un |
|- ( ( <" A B "> e. Word S /\ C e. S ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
17 |
15 7 16
|
syl2anc |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> ++ <" C "> ) = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
18 |
13 17
|
eqtrid |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) ) |
19 |
|
s2prop |
|- ( ( A e. S /\ B e. S ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
20 |
19
|
adantr |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B "> = { <. 0 , A >. , <. 1 , B >. } ) |
21 |
20
|
uneq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B "> u. { <. ( # ` <" A B "> ) , C >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
22 |
18 21
|
eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) ) |
23 |
22
|
uneq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> u. { <. ( # ` <" A B C "> ) , D >. } ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
24 |
12 23
|
eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
25 |
|
unass |
|- ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) |
26 |
25
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( { <. 0 , A >. , <. 1 , B >. } u. { <. ( # ` <" A B "> ) , C >. } ) u. { <. ( # ` <" A B C "> ) , D >. } ) = ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) ) |
27 |
|
df-pr |
|- { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) |
28 |
|
s2len |
|- ( # ` <" A B "> ) = 2 |
29 |
28
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B "> ) = 2 ) |
30 |
29
|
opeq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B "> ) , C >. = <. 2 , C >. ) |
31 |
|
s3len |
|- ( # ` <" A B C "> ) = 3 |
32 |
31
|
a1i |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( # ` <" A B C "> ) = 3 ) |
33 |
32
|
opeq1d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <. ( # ` <" A B C "> ) , D >. = <. 3 , D >. ) |
34 |
30 33
|
preq12d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> { <. ( # ` <" A B "> ) , C >. , <. ( # ` <" A B C "> ) , D >. } = { <. 2 , C >. , <. 3 , D >. } ) |
35 |
27 34
|
eqtr3id |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) = { <. 2 , C >. , <. 3 , D >. } ) |
36 |
35
|
uneq2d |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( { <. 0 , A >. , <. 1 , B >. } u. ( { <. ( # ` <" A B "> ) , C >. } u. { <. ( # ` <" A B C "> ) , D >. } ) ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
37 |
24 26 36
|
3eqtrd |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <" A B C "> ++ <" D "> ) = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |
38 |
1 37
|
eqtrid |
|- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> <" A B C D "> = ( { <. 0 , A >. , <. 1 , B >. } u. { <. 2 , C >. , <. 3 , D >. } ) ) |