Metamath Proof Explorer


Theorem s4s2

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s4s2
|- <" A B C D E F "> = ( <" A B C D "> ++ <" E F "> )

Proof

Step Hyp Ref Expression
1 df-s2
 |-  <" E F "> = ( <" E "> ++ <" F "> )
2 s4cli
 |-  <" A B C D "> e. Word _V
3 s1cli
 |-  <" E "> e. Word _V
4 df-s6
 |-  <" A B C D E F "> = ( <" A B C D E "> ++ <" F "> )
5 df-s5
 |-  <" A B C D E "> = ( <" A B C D "> ++ <" E "> )
6 1 2 3 4 5 cats1cat
 |-  <" A B C D E F "> = ( <" A B C D "> ++ <" E F "> )