Metamath Proof Explorer


Theorem s4s3

Description: Concatenation of fixed length strings. (Contributed by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion s4s3
|- <" A B C D E F G "> = ( <" A B C D "> ++ <" E F G "> )

Proof

Step Hyp Ref Expression
1 df-s3
 |-  <" E F G "> = ( <" E F "> ++ <" G "> )
2 s4cli
 |-  <" A B C D "> e. Word _V
3 s2cli
 |-  <" E F "> e. Word _V
4 df-s7
 |-  <" A B C D E F G "> = ( <" A B C D E F "> ++ <" G "> )
5 s4s2
 |-  <" A B C D E F "> = ( <" A B C D "> ++ <" E F "> )
6 1 2 3 4 5 cats1cat
 |-  <" A B C D E F G "> = ( <" A B C D "> ++ <" E F G "> )