Metamath Proof Explorer


Theorem s5s2

Description: Concatenation of fixed length strings. (Contributed by AV, 1-Mar-2021)

Ref Expression
Assertion s5s2
|- <" A B C D E F G "> = ( <" A B C D E "> ++ <" F G "> )

Proof

Step Hyp Ref Expression
1 s4s2
 |-  <" A B C D E F "> = ( <" A B C D "> ++ <" E F "> )
2 1 eqcomi
 |-  ( <" A B C D "> ++ <" E F "> ) = <" A B C D E F ">
3 2 oveq1i
 |-  ( ( <" A B C D "> ++ <" E F "> ) ++ <" G "> ) = ( <" A B C D E F "> ++ <" G "> )
4 s4cli
 |-  <" A B C D "> e. Word _V
5 s1cli
 |-  <" G "> e. Word _V
6 df-s5
 |-  <" A B C D E "> = ( <" A B C D "> ++ <" E "> )
7 df-s2
 |-  <" F G "> = ( <" F "> ++ <" G "> )
8 4 5 6 7 cats2cat
 |-  ( <" A B C D E "> ++ <" F G "> ) = ( ( <" A B C D "> ++ <" E F "> ) ++ <" G "> )
9 df-s7
 |-  <" A B C D E F G "> = ( <" A B C D E F "> ++ <" G "> )
10 3 8 9 3eqtr4ri
 |-  <" A B C D E F G "> = ( <" A B C D E "> ++ <" F G "> )