| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s2eqd.1 |
|- ( ph -> A = N ) |
| 2 |
|
s2eqd.2 |
|- ( ph -> B = O ) |
| 3 |
|
s3eqd.3 |
|- ( ph -> C = P ) |
| 4 |
|
s4eqd.4 |
|- ( ph -> D = Q ) |
| 5 |
|
s5eqd.5 |
|- ( ph -> E = R ) |
| 6 |
|
s6eqd.6 |
|- ( ph -> F = S ) |
| 7 |
1 2 3 4 5
|
s5eqd |
|- ( ph -> <" A B C D E "> = <" N O P Q R "> ) |
| 8 |
6
|
s1eqd |
|- ( ph -> <" F "> = <" S "> ) |
| 9 |
7 8
|
oveq12d |
|- ( ph -> ( <" A B C D E "> ++ <" F "> ) = ( <" N O P Q R "> ++ <" S "> ) ) |
| 10 |
|
df-s6 |
|- <" A B C D E F "> = ( <" A B C D E "> ++ <" F "> ) |
| 11 |
|
df-s6 |
|- <" N O P Q R S "> = ( <" N O P Q R "> ++ <" S "> ) |
| 12 |
9 10 11
|
3eqtr4g |
|- ( ph -> <" A B C D E F "> = <" N O P Q R S "> ) |