| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s2eqd.1 |
|- ( ph -> A = N ) |
| 2 |
|
s2eqd.2 |
|- ( ph -> B = O ) |
| 3 |
|
s3eqd.3 |
|- ( ph -> C = P ) |
| 4 |
|
s4eqd.4 |
|- ( ph -> D = Q ) |
| 5 |
|
s5eqd.5 |
|- ( ph -> E = R ) |
| 6 |
|
s6eqd.6 |
|- ( ph -> F = S ) |
| 7 |
|
s7eqd.6 |
|- ( ph -> G = T ) |
| 8 |
1 2 3 4 5 6
|
s6eqd |
|- ( ph -> <" A B C D E F "> = <" N O P Q R S "> ) |
| 9 |
7
|
s1eqd |
|- ( ph -> <" G "> = <" T "> ) |
| 10 |
8 9
|
oveq12d |
|- ( ph -> ( <" A B C D E F "> ++ <" G "> ) = ( <" N O P Q R S "> ++ <" T "> ) ) |
| 11 |
|
df-s7 |
|- <" A B C D E F G "> = ( <" A B C D E F "> ++ <" G "> ) |
| 12 |
|
df-s7 |
|- <" N O P Q R S T "> = ( <" N O P Q R S "> ++ <" T "> ) |
| 13 |
10 11 12
|
3eqtr4g |
|- ( ph -> <" A B C D E F G "> = <" N O P Q R S T "> ) |