Metamath Proof Explorer


Theorem s8eqd

Description: Equality theorem for a length 8 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1
|- ( ph -> A = N )
s2eqd.2
|- ( ph -> B = O )
s3eqd.3
|- ( ph -> C = P )
s4eqd.4
|- ( ph -> D = Q )
s5eqd.5
|- ( ph -> E = R )
s6eqd.6
|- ( ph -> F = S )
s7eqd.6
|- ( ph -> G = T )
s8eqd.6
|- ( ph -> H = U )
Assertion s8eqd
|- ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> )

Proof

Step Hyp Ref Expression
1 s2eqd.1
 |-  ( ph -> A = N )
2 s2eqd.2
 |-  ( ph -> B = O )
3 s3eqd.3
 |-  ( ph -> C = P )
4 s4eqd.4
 |-  ( ph -> D = Q )
5 s5eqd.5
 |-  ( ph -> E = R )
6 s6eqd.6
 |-  ( ph -> F = S )
7 s7eqd.6
 |-  ( ph -> G = T )
8 s8eqd.6
 |-  ( ph -> H = U )
9 1 2 3 4 5 6 7 s7eqd
 |-  ( ph -> <" A B C D E F G "> = <" N O P Q R S T "> )
10 8 s1eqd
 |-  ( ph -> <" H "> = <" U "> )
11 9 10 oveq12d
 |-  ( ph -> ( <" A B C D E F G "> ++ <" H "> ) = ( <" N O P Q R S T "> ++ <" U "> ) )
12 df-s8
 |-  <" A B C D E F G H "> = ( <" A B C D E F G "> ++ <" H "> )
13 df-s8
 |-  <" N O P Q R S T U "> = ( <" N O P Q R S T "> ++ <" U "> )
14 11 12 13 3eqtr4g
 |-  ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> )