Step |
Hyp |
Ref |
Expression |
1 |
|
s2eqd.1 |
|- ( ph -> A = N ) |
2 |
|
s2eqd.2 |
|- ( ph -> B = O ) |
3 |
|
s3eqd.3 |
|- ( ph -> C = P ) |
4 |
|
s4eqd.4 |
|- ( ph -> D = Q ) |
5 |
|
s5eqd.5 |
|- ( ph -> E = R ) |
6 |
|
s6eqd.6 |
|- ( ph -> F = S ) |
7 |
|
s7eqd.6 |
|- ( ph -> G = T ) |
8 |
|
s8eqd.6 |
|- ( ph -> H = U ) |
9 |
1 2 3 4 5 6 7
|
s7eqd |
|- ( ph -> <" A B C D E F G "> = <" N O P Q R S T "> ) |
10 |
8
|
s1eqd |
|- ( ph -> <" H "> = <" U "> ) |
11 |
9 10
|
oveq12d |
|- ( ph -> ( <" A B C D E F G "> ++ <" H "> ) = ( <" N O P Q R S T "> ++ <" U "> ) ) |
12 |
|
df-s8 |
|- <" A B C D E F G H "> = ( <" A B C D E F G "> ++ <" H "> ) |
13 |
|
df-s8 |
|- <" N O P Q R S T U "> = ( <" N O P Q R S T "> ++ <" U "> ) |
14 |
11 12 13
|
3eqtr4g |
|- ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> ) |