| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s2eqd.1 |
|- ( ph -> A = N ) |
| 2 |
|
s2eqd.2 |
|- ( ph -> B = O ) |
| 3 |
|
s3eqd.3 |
|- ( ph -> C = P ) |
| 4 |
|
s4eqd.4 |
|- ( ph -> D = Q ) |
| 5 |
|
s5eqd.5 |
|- ( ph -> E = R ) |
| 6 |
|
s6eqd.6 |
|- ( ph -> F = S ) |
| 7 |
|
s7eqd.6 |
|- ( ph -> G = T ) |
| 8 |
|
s8eqd.6 |
|- ( ph -> H = U ) |
| 9 |
1 2 3 4 5 6 7
|
s7eqd |
|- ( ph -> <" A B C D E F G "> = <" N O P Q R S T "> ) |
| 10 |
8
|
s1eqd |
|- ( ph -> <" H "> = <" U "> ) |
| 11 |
9 10
|
oveq12d |
|- ( ph -> ( <" A B C D E F G "> ++ <" H "> ) = ( <" N O P Q R S T "> ++ <" U "> ) ) |
| 12 |
|
df-s8 |
|- <" A B C D E F G H "> = ( <" A B C D E F G "> ++ <" H "> ) |
| 13 |
|
df-s8 |
|- <" N O P Q R S T U "> = ( <" N O P Q R S T "> ++ <" U "> ) |
| 14 |
11 12 13
|
3eqtr4g |
|- ( ph -> <" A B C D E F G H "> = <" N O P Q R S T U "> ) |