| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadval.a |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
sadval.b |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
sadval.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 4 |
|
sadcp1.n |
|- ( ph -> N e. NN0 ) |
| 5 |
|
sadcadd.k |
|- K = `' ( bits |` NN0 ) |
| 6 |
|
oveq2 |
|- ( x = 0 -> ( 0 ..^ x ) = ( 0 ..^ 0 ) ) |
| 7 |
|
fzo0 |
|- ( 0 ..^ 0 ) = (/) |
| 8 |
6 7
|
eqtrdi |
|- ( x = 0 -> ( 0 ..^ x ) = (/) ) |
| 9 |
8
|
ineq2d |
|- ( x = 0 -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i (/) ) ) |
| 10 |
|
in0 |
|- ( ( A sadd B ) i^i (/) ) = (/) |
| 11 |
9 10
|
eqtrdi |
|- ( x = 0 -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = (/) ) |
| 12 |
11
|
fveq2d |
|- ( x = 0 -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
| 13 |
|
0nn0 |
|- 0 e. NN0 |
| 14 |
|
fvres |
|- ( 0 e. NN0 -> ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) ) |
| 15 |
13 14
|
ax-mp |
|- ( ( bits |` NN0 ) ` 0 ) = ( bits ` 0 ) |
| 16 |
|
0bits |
|- ( bits ` 0 ) = (/) |
| 17 |
15 16
|
eqtr2i |
|- (/) = ( ( bits |` NN0 ) ` 0 ) |
| 18 |
5 17
|
fveq12i |
|- ( K ` (/) ) = ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) |
| 19 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
| 20 |
|
f1ocnvfv1 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ 0 e. NN0 ) -> ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 ) |
| 21 |
19 13 20
|
mp2an |
|- ( `' ( bits |` NN0 ) ` ( ( bits |` NN0 ) ` 0 ) ) = 0 |
| 22 |
18 21
|
eqtri |
|- ( K ` (/) ) = 0 |
| 23 |
12 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = 0 ) |
| 24 |
|
fveq2 |
|- ( x = 0 -> ( C ` x ) = ( C ` 0 ) ) |
| 25 |
24
|
eleq2d |
|- ( x = 0 -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` 0 ) ) ) |
| 26 |
|
oveq2 |
|- ( x = 0 -> ( 2 ^ x ) = ( 2 ^ 0 ) ) |
| 27 |
25 26
|
ifbieq1d |
|- ( x = 0 -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) |
| 28 |
23 27
|
oveq12d |
|- ( x = 0 -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) ) |
| 29 |
8
|
ineq2d |
|- ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = ( A i^i (/) ) ) |
| 30 |
|
in0 |
|- ( A i^i (/) ) = (/) |
| 31 |
29 30
|
eqtrdi |
|- ( x = 0 -> ( A i^i ( 0 ..^ x ) ) = (/) ) |
| 32 |
31
|
fveq2d |
|- ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
| 33 |
32 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = 0 ) |
| 34 |
8
|
ineq2d |
|- ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = ( B i^i (/) ) ) |
| 35 |
|
in0 |
|- ( B i^i (/) ) = (/) |
| 36 |
34 35
|
eqtrdi |
|- ( x = 0 -> ( B i^i ( 0 ..^ x ) ) = (/) ) |
| 37 |
36
|
fveq2d |
|- ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` (/) ) ) |
| 38 |
37 22
|
eqtrdi |
|- ( x = 0 -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = 0 ) |
| 39 |
33 38
|
oveq12d |
|- ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( 0 + 0 ) ) |
| 40 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 41 |
39 40
|
eqtrdi |
|- ( x = 0 -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = 0 ) |
| 42 |
28 41
|
eqeq12d |
|- ( x = 0 -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) ) |
| 43 |
42
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) ) ) |
| 44 |
|
oveq2 |
|- ( x = k -> ( 0 ..^ x ) = ( 0 ..^ k ) ) |
| 45 |
44
|
ineq2d |
|- ( x = k -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) |
| 46 |
45
|
fveq2d |
|- ( x = k -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) ) |
| 47 |
|
fveq2 |
|- ( x = k -> ( C ` x ) = ( C ` k ) ) |
| 48 |
47
|
eleq2d |
|- ( x = k -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` k ) ) ) |
| 49 |
|
oveq2 |
|- ( x = k -> ( 2 ^ x ) = ( 2 ^ k ) ) |
| 50 |
48 49
|
ifbieq1d |
|- ( x = k -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) |
| 51 |
46 50
|
oveq12d |
|- ( x = k -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) ) |
| 52 |
44
|
ineq2d |
|- ( x = k -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ k ) ) ) |
| 53 |
52
|
fveq2d |
|- ( x = k -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ k ) ) ) ) |
| 54 |
44
|
ineq2d |
|- ( x = k -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ k ) ) ) |
| 55 |
54
|
fveq2d |
|- ( x = k -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ k ) ) ) ) |
| 56 |
53 55
|
oveq12d |
|- ( x = k -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) |
| 57 |
51 56
|
eqeq12d |
|- ( x = k -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) |
| 58 |
57
|
imbi2d |
|- ( x = k -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) ) ) |
| 59 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 0 ..^ x ) = ( 0 ..^ ( k + 1 ) ) ) |
| 60 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) |
| 61 |
60
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
| 62 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( C ` x ) = ( C ` ( k + 1 ) ) ) |
| 63 |
62
|
eleq2d |
|- ( x = ( k + 1 ) -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` ( k + 1 ) ) ) ) |
| 64 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( k + 1 ) ) ) |
| 65 |
63 64
|
ifbieq1d |
|- ( x = ( k + 1 ) -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) |
| 66 |
61 65
|
oveq12d |
|- ( x = ( k + 1 ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) ) |
| 67 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) |
| 68 |
67
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
| 69 |
59
|
ineq2d |
|- ( x = ( k + 1 ) -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) |
| 70 |
69
|
fveq2d |
|- ( x = ( k + 1 ) -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) |
| 71 |
68 70
|
oveq12d |
|- ( x = ( k + 1 ) -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) |
| 72 |
66 71
|
eqeq12d |
|- ( x = ( k + 1 ) -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) |
| 73 |
72
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
| 74 |
|
oveq2 |
|- ( x = N -> ( 0 ..^ x ) = ( 0 ..^ N ) ) |
| 75 |
74
|
ineq2d |
|- ( x = N -> ( ( A sadd B ) i^i ( 0 ..^ x ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
| 76 |
75
|
fveq2d |
|- ( x = N -> ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) = ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
| 77 |
|
fveq2 |
|- ( x = N -> ( C ` x ) = ( C ` N ) ) |
| 78 |
77
|
eleq2d |
|- ( x = N -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` N ) ) ) |
| 79 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
| 80 |
78 79
|
ifbieq1d |
|- ( x = N -> if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) = if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) |
| 81 |
76 80
|
oveq12d |
|- ( x = N -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) ) |
| 82 |
74
|
ineq2d |
|- ( x = N -> ( A i^i ( 0 ..^ x ) ) = ( A i^i ( 0 ..^ N ) ) ) |
| 83 |
82
|
fveq2d |
|- ( x = N -> ( K ` ( A i^i ( 0 ..^ x ) ) ) = ( K ` ( A i^i ( 0 ..^ N ) ) ) ) |
| 84 |
74
|
ineq2d |
|- ( x = N -> ( B i^i ( 0 ..^ x ) ) = ( B i^i ( 0 ..^ N ) ) ) |
| 85 |
84
|
fveq2d |
|- ( x = N -> ( K ` ( B i^i ( 0 ..^ x ) ) ) = ( K ` ( B i^i ( 0 ..^ N ) ) ) ) |
| 86 |
83 85
|
oveq12d |
|- ( x = N -> ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) |
| 87 |
81 86
|
eqeq12d |
|- ( x = N -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) <-> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) |
| 88 |
87
|
imbi2d |
|- ( x = N -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ x ) ) ) + if ( (/) e. ( C ` x ) , ( 2 ^ x ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ x ) ) ) + ( K ` ( B i^i ( 0 ..^ x ) ) ) ) ) <-> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) ) |
| 89 |
1 2 3
|
sadc0 |
|- ( ph -> -. (/) e. ( C ` 0 ) ) |
| 90 |
89
|
iffalsed |
|- ( ph -> if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) = 0 ) |
| 91 |
90
|
oveq2d |
|- ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = ( 0 + 0 ) ) |
| 92 |
91 40
|
eqtrdi |
|- ( ph -> ( 0 + if ( (/) e. ( C ` 0 ) , ( 2 ^ 0 ) , 0 ) ) = 0 ) |
| 93 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> A C_ NN0 ) |
| 94 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> B C_ NN0 ) |
| 95 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> k e. NN0 ) |
| 96 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) |
| 97 |
93 94 3 95 5 96
|
sadadd2lem |
|- ( ( ( ph /\ k e. NN0 ) /\ ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) |
| 98 |
97
|
ex |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) |
| 99 |
98
|
expcom |
|- ( k e. NN0 -> ( ph -> ( ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
| 100 |
99
|
a2d |
|- ( k e. NN0 -> ( ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ k ) ) ) + if ( (/) e. ( C ` k ) , ( 2 ^ k ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ k ) ) ) + ( K ` ( B i^i ( 0 ..^ k ) ) ) ) ) -> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ ( k + 1 ) ) ) ) + if ( (/) e. ( C ` ( k + 1 ) ) , ( 2 ^ ( k + 1 ) ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ ( k + 1 ) ) ) ) + ( K ` ( B i^i ( 0 ..^ ( k + 1 ) ) ) ) ) ) ) ) |
| 101 |
43 58 73 88 92 100
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) ) |
| 102 |
4 101
|
mpcom |
|- ( ph -> ( ( K ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + if ( (/) e. ( C ` N ) , ( 2 ^ N ) , 0 ) ) = ( ( K ` ( A i^i ( 0 ..^ N ) ) ) + ( K ` ( B i^i ( 0 ..^ N ) ) ) ) ) |