| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0cn |
|- 0 e. CC |
| 2 |
|
ifcl |
|- ( ( A e. CC /\ 0 e. CC ) -> if ( ps , A , 0 ) e. CC ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. CC -> if ( ps , A , 0 ) e. CC ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> if ( ps , A , 0 ) e. CC ) |
| 5 |
|
simpll |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> A e. CC ) |
| 6 |
4 5 5
|
add12d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( if ( ps , A , 0 ) + ( A + A ) ) = ( A + ( if ( ps , A , 0 ) + A ) ) ) |
| 7 |
5 4 5
|
addassd |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( ( A + if ( ps , A , 0 ) ) + A ) = ( A + ( if ( ps , A , 0 ) + A ) ) ) |
| 8 |
6 7
|
eqtr4d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( if ( ps , A , 0 ) + ( A + A ) ) = ( ( A + if ( ps , A , 0 ) ) + A ) ) |
| 9 |
|
pm5.501 |
|- ( ph -> ( ps <-> ( ph <-> ps ) ) ) |
| 10 |
9
|
adantl |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( ps <-> ( ph <-> ps ) ) ) |
| 11 |
10
|
bicomd |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( ( ph <-> ps ) <-> ps ) ) |
| 12 |
11
|
ifbid |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> if ( ( ph <-> ps ) , A , 0 ) = if ( ps , A , 0 ) ) |
| 13 |
|
animorrl |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( ph \/ ps ) ) |
| 14 |
|
iftrue |
|- ( ( ph \/ ps ) -> if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) = ( 2 x. A ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) = ( 2 x. A ) ) |
| 16 |
5
|
2timesd |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( 2 x. A ) = ( A + A ) ) |
| 17 |
15 16
|
eqtrd |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) = ( A + A ) ) |
| 18 |
12 17
|
oveq12d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + ( A + A ) ) ) |
| 19 |
|
iftrue |
|- ( ph -> if ( ph , A , 0 ) = A ) |
| 20 |
19
|
adantl |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> if ( ph , A , 0 ) = A ) |
| 21 |
20
|
oveq1d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 22 |
21
|
oveq1d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) = ( ( A + if ( ps , A , 0 ) ) + A ) ) |
| 23 |
8 18 22
|
3eqtr4d |
|- ( ( ( A e. CC /\ ch ) /\ ph ) -> ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) ) |
| 24 |
|
iffalse |
|- ( -. ph -> if ( ph , A , 0 ) = 0 ) |
| 25 |
24
|
adantl |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> if ( ph , A , 0 ) = 0 ) |
| 26 |
25
|
oveq1d |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) = ( 0 + if ( ps , A , 0 ) ) ) |
| 27 |
3
|
ad2antrr |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> if ( ps , A , 0 ) e. CC ) |
| 28 |
27
|
addlidd |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( 0 + if ( ps , A , 0 ) ) = if ( ps , A , 0 ) ) |
| 29 |
26 28
|
eqtrd |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) = if ( ps , A , 0 ) ) |
| 30 |
29
|
oveq1d |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) = ( if ( ps , A , 0 ) + A ) ) |
| 31 |
|
2cnd |
|- ( A e. CC -> 2 e. CC ) |
| 32 |
|
id |
|- ( A e. CC -> A e. CC ) |
| 33 |
31 32
|
mulcld |
|- ( A e. CC -> ( 2 x. A ) e. CC ) |
| 34 |
33
|
addlidd |
|- ( A e. CC -> ( 0 + ( 2 x. A ) ) = ( 2 x. A ) ) |
| 35 |
|
2times |
|- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
| 36 |
34 35
|
eqtrd |
|- ( A e. CC -> ( 0 + ( 2 x. A ) ) = ( A + A ) ) |
| 37 |
36
|
adantr |
|- ( ( A e. CC /\ ps ) -> ( 0 + ( 2 x. A ) ) = ( A + A ) ) |
| 38 |
|
iftrue |
|- ( ps -> if ( ps , 0 , A ) = 0 ) |
| 39 |
38
|
adantl |
|- ( ( A e. CC /\ ps ) -> if ( ps , 0 , A ) = 0 ) |
| 40 |
|
iftrue |
|- ( ps -> if ( ps , ( 2 x. A ) , 0 ) = ( 2 x. A ) ) |
| 41 |
40
|
adantl |
|- ( ( A e. CC /\ ps ) -> if ( ps , ( 2 x. A ) , 0 ) = ( 2 x. A ) ) |
| 42 |
39 41
|
oveq12d |
|- ( ( A e. CC /\ ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( 0 + ( 2 x. A ) ) ) |
| 43 |
|
iftrue |
|- ( ps -> if ( ps , A , 0 ) = A ) |
| 44 |
43
|
adantl |
|- ( ( A e. CC /\ ps ) -> if ( ps , A , 0 ) = A ) |
| 45 |
44
|
oveq1d |
|- ( ( A e. CC /\ ps ) -> ( if ( ps , A , 0 ) + A ) = ( A + A ) ) |
| 46 |
37 42 45
|
3eqtr4d |
|- ( ( A e. CC /\ ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + A ) ) |
| 47 |
|
simpl |
|- ( ( A e. CC /\ -. ps ) -> A e. CC ) |
| 48 |
|
0cnd |
|- ( ( A e. CC /\ -. ps ) -> 0 e. CC ) |
| 49 |
47 48
|
addcomd |
|- ( ( A e. CC /\ -. ps ) -> ( A + 0 ) = ( 0 + A ) ) |
| 50 |
|
iffalse |
|- ( -. ps -> if ( ps , 0 , A ) = A ) |
| 51 |
50
|
adantl |
|- ( ( A e. CC /\ -. ps ) -> if ( ps , 0 , A ) = A ) |
| 52 |
|
iffalse |
|- ( -. ps -> if ( ps , ( 2 x. A ) , 0 ) = 0 ) |
| 53 |
52
|
adantl |
|- ( ( A e. CC /\ -. ps ) -> if ( ps , ( 2 x. A ) , 0 ) = 0 ) |
| 54 |
51 53
|
oveq12d |
|- ( ( A e. CC /\ -. ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( A + 0 ) ) |
| 55 |
|
iffalse |
|- ( -. ps -> if ( ps , A , 0 ) = 0 ) |
| 56 |
55
|
adantl |
|- ( ( A e. CC /\ -. ps ) -> if ( ps , A , 0 ) = 0 ) |
| 57 |
56
|
oveq1d |
|- ( ( A e. CC /\ -. ps ) -> ( if ( ps , A , 0 ) + A ) = ( 0 + A ) ) |
| 58 |
49 54 57
|
3eqtr4d |
|- ( ( A e. CC /\ -. ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + A ) ) |
| 59 |
46 58
|
pm2.61dan |
|- ( A e. CC -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + A ) ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + A ) ) |
| 61 |
|
ifnot |
|- if ( -. ps , A , 0 ) = if ( ps , 0 , A ) |
| 62 |
|
nbn2 |
|- ( -. ph -> ( -. ps <-> ( ph <-> ps ) ) ) |
| 63 |
62
|
adantl |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( -. ps <-> ( ph <-> ps ) ) ) |
| 64 |
63
|
ifbid |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> if ( -. ps , A , 0 ) = if ( ( ph <-> ps ) , A , 0 ) ) |
| 65 |
61 64
|
eqtr3id |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> if ( ps , 0 , A ) = if ( ( ph <-> ps ) , A , 0 ) ) |
| 66 |
|
biorf |
|- ( -. ph -> ( ps <-> ( ph \/ ps ) ) ) |
| 67 |
66
|
adantl |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( ps <-> ( ph \/ ps ) ) ) |
| 68 |
67
|
ifbid |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> if ( ps , ( 2 x. A ) , 0 ) = if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) |
| 69 |
65 68
|
oveq12d |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) ) |
| 70 |
30 60 69
|
3eqtr2rd |
|- ( ( ( A e. CC /\ ch ) /\ -. ph ) -> ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) ) |
| 71 |
23 70
|
pm2.61dan |
|- ( ( A e. CC /\ ch ) -> ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) ) |
| 72 |
|
hadrot |
|- ( hadd ( ch , ph , ps ) <-> hadd ( ph , ps , ch ) ) |
| 73 |
|
had1 |
|- ( ch -> ( hadd ( ch , ph , ps ) <-> ( ph <-> ps ) ) ) |
| 74 |
72 73
|
bitr3id |
|- ( ch -> ( hadd ( ph , ps , ch ) <-> ( ph <-> ps ) ) ) |
| 75 |
74
|
adantl |
|- ( ( A e. CC /\ ch ) -> ( hadd ( ph , ps , ch ) <-> ( ph <-> ps ) ) ) |
| 76 |
75
|
ifbid |
|- ( ( A e. CC /\ ch ) -> if ( hadd ( ph , ps , ch ) , A , 0 ) = if ( ( ph <-> ps ) , A , 0 ) ) |
| 77 |
|
cad1 |
|- ( ch -> ( cadd ( ph , ps , ch ) <-> ( ph \/ ps ) ) ) |
| 78 |
77
|
adantl |
|- ( ( A e. CC /\ ch ) -> ( cadd ( ph , ps , ch ) <-> ( ph \/ ps ) ) ) |
| 79 |
78
|
ifbid |
|- ( ( A e. CC /\ ch ) -> if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) = if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) |
| 80 |
76 79
|
oveq12d |
|- ( ( A e. CC /\ ch ) -> ( if ( hadd ( ph , ps , ch ) , A , 0 ) + if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) ) = ( if ( ( ph <-> ps ) , A , 0 ) + if ( ( ph \/ ps ) , ( 2 x. A ) , 0 ) ) ) |
| 81 |
|
iftrue |
|- ( ch -> if ( ch , A , 0 ) = A ) |
| 82 |
81
|
adantl |
|- ( ( A e. CC /\ ch ) -> if ( ch , A , 0 ) = A ) |
| 83 |
82
|
oveq2d |
|- ( ( A e. CC /\ ch ) -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + A ) ) |
| 84 |
71 80 83
|
3eqtr4d |
|- ( ( A e. CC /\ ch ) -> ( if ( hadd ( ph , ps , ch ) , A , 0 ) + if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) ) |
| 85 |
19
|
adantl |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> if ( ph , A , 0 ) = A ) |
| 86 |
85
|
oveq1d |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 87 |
44
|
oveq2d |
|- ( ( A e. CC /\ ps ) -> ( A + if ( ps , A , 0 ) ) = ( A + A ) ) |
| 88 |
37 42 87
|
3eqtr4d |
|- ( ( A e. CC /\ ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 89 |
53 56
|
eqtr4d |
|- ( ( A e. CC /\ -. ps ) -> if ( ps , ( 2 x. A ) , 0 ) = if ( ps , A , 0 ) ) |
| 90 |
51 89
|
oveq12d |
|- ( ( A e. CC /\ -. ps ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 91 |
88 90
|
pm2.61dan |
|- ( A e. CC -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( A + if ( ps , A , 0 ) ) ) |
| 93 |
9
|
adantl |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( ps <-> ( ph <-> ps ) ) ) |
| 94 |
93
|
notbid |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( -. ps <-> -. ( ph <-> ps ) ) ) |
| 95 |
|
df-xor |
|- ( ( ph \/_ ps ) <-> -. ( ph <-> ps ) ) |
| 96 |
94 95
|
bitr4di |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( -. ps <-> ( ph \/_ ps ) ) ) |
| 97 |
96
|
ifbid |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> if ( -. ps , A , 0 ) = if ( ( ph \/_ ps ) , A , 0 ) ) |
| 98 |
61 97
|
eqtr3id |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> if ( ps , 0 , A ) = if ( ( ph \/_ ps ) , A , 0 ) ) |
| 99 |
|
ibar |
|- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
| 100 |
99
|
adantl |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( ps <-> ( ph /\ ps ) ) ) |
| 101 |
100
|
ifbid |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> if ( ps , ( 2 x. A ) , 0 ) = if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) |
| 102 |
98 101
|
oveq12d |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( if ( ps , 0 , A ) + if ( ps , ( 2 x. A ) , 0 ) ) = ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) ) |
| 103 |
86 92 102
|
3eqtr2rd |
|- ( ( ( A e. CC /\ -. ch ) /\ ph ) -> ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) = ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) ) |
| 104 |
|
simplll |
|- ( ( ( ( A e. CC /\ -. ch ) /\ -. ph ) /\ ps ) -> A e. CC ) |
| 105 |
|
0cnd |
|- ( ( ( ( A e. CC /\ -. ch ) /\ -. ph ) /\ -. ps ) -> 0 e. CC ) |
| 106 |
104 105
|
ifclda |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> if ( ps , A , 0 ) e. CC ) |
| 107 |
|
0cnd |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> 0 e. CC ) |
| 108 |
106 107
|
addcomd |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( if ( ps , A , 0 ) + 0 ) = ( 0 + if ( ps , A , 0 ) ) ) |
| 109 |
62
|
adantl |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( -. ps <-> ( ph <-> ps ) ) ) |
| 110 |
109
|
con1bid |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( -. ( ph <-> ps ) <-> ps ) ) |
| 111 |
95 110
|
bitrid |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( ( ph \/_ ps ) <-> ps ) ) |
| 112 |
111
|
ifbid |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> if ( ( ph \/_ ps ) , A , 0 ) = if ( ps , A , 0 ) ) |
| 113 |
|
simpr |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> -. ph ) |
| 114 |
113
|
intnanrd |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> -. ( ph /\ ps ) ) |
| 115 |
|
iffalse |
|- ( -. ( ph /\ ps ) -> if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) = 0 ) |
| 116 |
114 115
|
syl |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) = 0 ) |
| 117 |
112 116
|
oveq12d |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) = ( if ( ps , A , 0 ) + 0 ) ) |
| 118 |
24
|
adantl |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> if ( ph , A , 0 ) = 0 ) |
| 119 |
118
|
oveq1d |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) = ( 0 + if ( ps , A , 0 ) ) ) |
| 120 |
108 117 119
|
3eqtr4d |
|- ( ( ( A e. CC /\ -. ch ) /\ -. ph ) -> ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) = ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) ) |
| 121 |
103 120
|
pm2.61dan |
|- ( ( A e. CC /\ -. ch ) -> ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) = ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) ) |
| 122 |
|
had0 |
|- ( -. ch -> ( hadd ( ch , ph , ps ) <-> ( ph \/_ ps ) ) ) |
| 123 |
72 122
|
bitr3id |
|- ( -. ch -> ( hadd ( ph , ps , ch ) <-> ( ph \/_ ps ) ) ) |
| 124 |
123
|
adantl |
|- ( ( A e. CC /\ -. ch ) -> ( hadd ( ph , ps , ch ) <-> ( ph \/_ ps ) ) ) |
| 125 |
124
|
ifbid |
|- ( ( A e. CC /\ -. ch ) -> if ( hadd ( ph , ps , ch ) , A , 0 ) = if ( ( ph \/_ ps ) , A , 0 ) ) |
| 126 |
|
cad0 |
|- ( -. ch -> ( cadd ( ph , ps , ch ) <-> ( ph /\ ps ) ) ) |
| 127 |
126
|
adantl |
|- ( ( A e. CC /\ -. ch ) -> ( cadd ( ph , ps , ch ) <-> ( ph /\ ps ) ) ) |
| 128 |
127
|
ifbid |
|- ( ( A e. CC /\ -. ch ) -> if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) = if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) |
| 129 |
125 128
|
oveq12d |
|- ( ( A e. CC /\ -. ch ) -> ( if ( hadd ( ph , ps , ch ) , A , 0 ) + if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) ) = ( if ( ( ph \/_ ps ) , A , 0 ) + if ( ( ph /\ ps ) , ( 2 x. A ) , 0 ) ) ) |
| 130 |
|
iffalse |
|- ( -. ch -> if ( ch , A , 0 ) = 0 ) |
| 131 |
130
|
oveq2d |
|- ( -. ch -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + 0 ) ) |
| 132 |
|
ifcl |
|- ( ( A e. CC /\ 0 e. CC ) -> if ( ph , A , 0 ) e. CC ) |
| 133 |
1 132
|
mpan2 |
|- ( A e. CC -> if ( ph , A , 0 ) e. CC ) |
| 134 |
133 3
|
addcld |
|- ( A e. CC -> ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) e. CC ) |
| 135 |
134
|
addridd |
|- ( A e. CC -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + 0 ) = ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) ) |
| 136 |
131 135
|
sylan9eqr |
|- ( ( A e. CC /\ -. ch ) -> ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) = ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) ) |
| 137 |
121 129 136
|
3eqtr4d |
|- ( ( A e. CC /\ -. ch ) -> ( if ( hadd ( ph , ps , ch ) , A , 0 ) + if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) ) |
| 138 |
84 137
|
pm2.61dan |
|- ( A e. CC -> ( if ( hadd ( ph , ps , ch ) , A , 0 ) + if ( cadd ( ph , ps , ch ) , ( 2 x. A ) , 0 ) ) = ( ( if ( ph , A , 0 ) + if ( ps , A , 0 ) ) + if ( ch , A , 0 ) ) ) |