| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadasslem.1 |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
sadasslem.2 |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
sadasslem.3 |
|- ( ph -> C C_ NN0 ) |
| 4 |
|
sadasslem.4 |
|- ( ph -> N e. NN0 ) |
| 5 |
|
inss1 |
|- ( A i^i ( 0 ..^ N ) ) C_ A |
| 6 |
5 1
|
sstrid |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 7 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 8 |
7
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
| 9 |
|
inss2 |
|- ( A i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 10 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( A i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( A i^i ( 0 ..^ N ) ) e. Fin ) |
| 11 |
8 9 10
|
sylancl |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) e. Fin ) |
| 12 |
|
elfpw |
|- ( ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( A i^i ( 0 ..^ N ) ) C_ NN0 /\ ( A i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 13 |
6 11 12
|
sylanbrc |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 14 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
| 15 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 16 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
| 17 |
14 15 16
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
| 18 |
17
|
ffvelcdmi |
|- ( ( A i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 19 |
13 18
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 20 |
19
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. CC ) |
| 21 |
|
inss1 |
|- ( B i^i ( 0 ..^ N ) ) C_ B |
| 22 |
21 2
|
sstrid |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 23 |
|
inss2 |
|- ( B i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 24 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( B i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( B i^i ( 0 ..^ N ) ) e. Fin ) |
| 25 |
8 23 24
|
sylancl |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) e. Fin ) |
| 26 |
|
elfpw |
|- ( ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( B i^i ( 0 ..^ N ) ) C_ NN0 /\ ( B i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 27 |
22 25 26
|
sylanbrc |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 28 |
17
|
ffvelcdmi |
|- ( ( B i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 29 |
27 28
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 30 |
29
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. CC ) |
| 31 |
|
inss1 |
|- ( C i^i ( 0 ..^ N ) ) C_ C |
| 32 |
31 3
|
sstrid |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 33 |
|
inss2 |
|- ( C i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 34 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( C i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( C i^i ( 0 ..^ N ) ) e. Fin ) |
| 35 |
8 33 34
|
sylancl |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) e. Fin ) |
| 36 |
|
elfpw |
|- ( ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( C i^i ( 0 ..^ N ) ) C_ NN0 /\ ( C i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 37 |
32 35 36
|
sylanbrc |
|- ( ph -> ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 38 |
17
|
ffvelcdmi |
|- ( ( C i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 40 |
39
|
nn0cnd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. CC ) |
| 41 |
20 30 40
|
addassd |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) ) |
| 42 |
41
|
oveq1d |
|- ( ph -> ( ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) mod ( 2 ^ N ) ) ) |
| 43 |
|
inss1 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( A sadd B ) |
| 44 |
|
sadcl |
|- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 ) |
| 45 |
1 2 44
|
syl2anc |
|- ( ph -> ( A sadd B ) C_ NN0 ) |
| 46 |
43 45
|
sstrid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 47 |
|
inss2 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 48 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 49 |
8 47 48
|
sylancl |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 50 |
|
elfpw |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 51 |
46 49 50
|
sylanbrc |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 52 |
17
|
ffvelcdmi |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 54 |
53
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 55 |
19
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) e. RR ) |
| 56 |
29
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) e. RR ) |
| 57 |
55 56
|
readdcld |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) e. RR ) |
| 58 |
39
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) e. RR ) |
| 59 |
|
2rp |
|- 2 e. RR+ |
| 60 |
59
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 61 |
4
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 62 |
60 61
|
rpexpcld |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
| 63 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 64 |
|
eqid |
|- `' ( bits |` NN0 ) = `' ( bits |` NN0 ) |
| 65 |
1 2 63 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 66 |
|
eqidd |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
| 67 |
54 57 58 58 62 65 66
|
modadd12d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 68 |
|
inss1 |
|- ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( B sadd C ) |
| 69 |
|
sadcl |
|- ( ( B C_ NN0 /\ C C_ NN0 ) -> ( B sadd C ) C_ NN0 ) |
| 70 |
2 3 69
|
syl2anc |
|- ( ph -> ( B sadd C ) C_ NN0 ) |
| 71 |
68 70
|
sstrid |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 72 |
|
inss2 |
|- ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 73 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 74 |
8 72 73
|
sylancl |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 75 |
|
elfpw |
|- ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 76 |
71 74 75
|
sylanbrc |
|- ( ph -> ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 77 |
17
|
ffvelcdmi |
|- ( ( ( B sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 79 |
78
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 80 |
56 58
|
readdcld |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) e. RR ) |
| 81 |
|
eqidd |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
| 82 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. B , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. B , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 83 |
2 3 82 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 84 |
55 55 79 80 62 81 83
|
modadd12d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) ) mod ( 2 ^ N ) ) ) |
| 85 |
42 67 84
|
3eqtr4d |
|- ( ph -> ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 86 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A sadd B ) , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A sadd B ) , m e. C , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 87 |
45 3 86 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( C i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 88 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. ( B sadd C ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. ( B sadd C ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 89 |
1 70 88 4 64
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B sadd C ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 90 |
85 87 89
|
3eqtr4d |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
| 91 |
|
inss1 |
|- ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( ( A sadd B ) sadd C ) |
| 92 |
|
sadcl |
|- ( ( ( A sadd B ) C_ NN0 /\ C C_ NN0 ) -> ( ( A sadd B ) sadd C ) C_ NN0 ) |
| 93 |
45 3 92
|
syl2anc |
|- ( ph -> ( ( A sadd B ) sadd C ) C_ NN0 ) |
| 94 |
91 93
|
sstrid |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 95 |
|
inss2 |
|- ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 96 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 97 |
8 95 96
|
sylancl |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 98 |
|
elfpw |
|- ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 99 |
94 97 98
|
sylanbrc |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 100 |
17
|
ffvelcdmi |
|- ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 101 |
99 100
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 102 |
101
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 103 |
101
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
| 104 |
101
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) ) |
| 105 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
| 106 |
14 99 105
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
| 107 |
104 106
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) |
| 108 |
107 95
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
| 109 |
101
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 110 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 111 |
109 4 110
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 112 |
108 111
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 113 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 114 |
112 113
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 115 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
| 116 |
102 62 103 114 115
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) ) |
| 117 |
|
inss1 |
|- ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( A sadd ( B sadd C ) ) |
| 118 |
|
sadcl |
|- ( ( A C_ NN0 /\ ( B sadd C ) C_ NN0 ) -> ( A sadd ( B sadd C ) ) C_ NN0 ) |
| 119 |
1 70 118
|
syl2anc |
|- ( ph -> ( A sadd ( B sadd C ) ) C_ NN0 ) |
| 120 |
117 119
|
sstrid |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 121 |
|
inss2 |
|- ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 122 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 123 |
8 121 122
|
sylancl |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 124 |
|
elfpw |
|- ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 125 |
120 123 124
|
sylanbrc |
|- ( ph -> ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 126 |
17
|
ffvelcdmi |
|- ( ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 127 |
125 126
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 128 |
127
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 129 |
|
2nn |
|- 2 e. NN |
| 130 |
129
|
a1i |
|- ( ph -> 2 e. NN ) |
| 131 |
130 4
|
nnexpcld |
|- ( ph -> ( 2 ^ N ) e. NN ) |
| 132 |
131
|
nnrpd |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
| 133 |
127
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 134 |
127
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) ) |
| 135 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
| 136 |
14 125 135
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
| 137 |
134 136
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |
| 138 |
137 121
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
| 139 |
127
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 140 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 141 |
139 4 140
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 142 |
138 141
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 143 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 144 |
142 143
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 145 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 146 |
128 132 133 144 145
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 147 |
90 116 146
|
3eqtr3d |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 148 |
|
f1of1 |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) |
| 149 |
14 15 148
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 |
| 150 |
|
f1fveq |
|- ( ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 /\ ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 151 |
149 150
|
mpan |
|- ( ( ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 152 |
99 125 151
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) ) |
| 153 |
147 152
|
mpbid |
|- ( ph -> ( ( ( A sadd B ) sadd C ) i^i ( 0 ..^ N ) ) = ( ( A sadd ( B sadd C ) ) i^i ( 0 ..^ N ) ) ) |