| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadval.a |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
sadval.b |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
sadval.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 4 |
|
noel |
|- -. (/) e. (/) |
| 5 |
3
|
fveq1i |
|- ( C ` 0 ) = ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` 0 ) |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` 0 ) = ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) ) |
| 8 |
6 7
|
ax-mp |
|- ( seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) ` 0 ) = ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) |
| 9 |
|
0nn0 |
|- 0 e. NN0 |
| 10 |
|
iftrue |
|- ( n = 0 -> if ( n = 0 , (/) , ( n - 1 ) ) = (/) ) |
| 11 |
|
eqid |
|- ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) = ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) |
| 12 |
|
0ex |
|- (/) e. _V |
| 13 |
10 11 12
|
fvmpt |
|- ( 0 e. NN0 -> ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) = (/) ) |
| 14 |
9 13
|
ax-mp |
|- ( ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ` 0 ) = (/) |
| 15 |
5 8 14
|
3eqtri |
|- ( C ` 0 ) = (/) |
| 16 |
15
|
eleq2i |
|- ( (/) e. ( C ` 0 ) <-> (/) e. (/) ) |
| 17 |
4 16
|
mtbir |
|- -. (/) e. ( C ` 0 ) |
| 18 |
17
|
a1i |
|- ( ph -> -. (/) e. ( C ` 0 ) ) |