Description: The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | saddisj.1 | |- ( ph -> A C_ NN0 )  | 
					|
| saddisj.2 | |- ( ph -> B C_ NN0 )  | 
					||
| saddisj.3 | |- ( ph -> ( A i^i B ) = (/) )  | 
					||
| Assertion | saddisj | |- ( ph -> ( A sadd B ) = ( A u. B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | saddisj.1 | |- ( ph -> A C_ NN0 )  | 
						|
| 2 | saddisj.2 | |- ( ph -> B C_ NN0 )  | 
						|
| 3 | saddisj.3 | |- ( ph -> ( A i^i B ) = (/) )  | 
						|
| 4 | sadcl | |- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 )  | 
						|
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( A sadd B ) C_ NN0 )  | 
						
| 6 | 5 | sseld | |- ( ph -> ( k e. ( A sadd B ) -> k e. NN0 ) )  | 
						
| 7 | 1 2 | unssd | |- ( ph -> ( A u. B ) C_ NN0 )  | 
						
| 8 | 7 | sseld | |- ( ph -> ( k e. ( A u. B ) -> k e. NN0 ) )  | 
						
| 9 | 1 | adantr | |- ( ( ph /\ k e. NN0 ) -> A C_ NN0 )  | 
						
| 10 | 2 | adantr | |- ( ( ph /\ k e. NN0 ) -> B C_ NN0 )  | 
						
| 11 | 3 | adantr | |- ( ( ph /\ k e. NN0 ) -> ( A i^i B ) = (/) )  | 
						
| 12 | eqid | |- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( x e. NN0 |-> if ( x = 0 , (/) , ( x - 1 ) ) ) )  | 
						|
| 13 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 )  | 
						|
| 14 | 9 10 11 12 13 | saddisjlem | |- ( ( ph /\ k e. NN0 ) -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) )  | 
						
| 15 | 14 | ex | |- ( ph -> ( k e. NN0 -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) ) )  | 
						
| 16 | 6 8 15 | pm5.21ndd | |- ( ph -> ( k e. ( A sadd B ) <-> k e. ( A u. B ) ) )  | 
						
| 17 | 16 | eqrdv | |- ( ph -> ( A sadd B ) = ( A u. B ) )  |