| Step |
Hyp |
Ref |
Expression |
| 1 |
|
saddisj.1 |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
saddisj.2 |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
saddisj.3 |
|- ( ph -> ( A i^i B ) = (/) ) |
| 4 |
|
saddisjlem.c |
|- C = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 5 |
|
saddisjlem.3 |
|- ( ph -> N e. NN0 ) |
| 6 |
1 2 4 5
|
sadval |
|- ( ph -> ( N e. ( A sadd B ) <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) ) |
| 7 |
|
fveq2 |
|- ( x = 0 -> ( C ` x ) = ( C ` 0 ) ) |
| 8 |
7
|
eleq2d |
|- ( x = 0 -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` 0 ) ) ) |
| 9 |
8
|
notbid |
|- ( x = 0 -> ( -. (/) e. ( C ` x ) <-> -. (/) e. ( C ` 0 ) ) ) |
| 10 |
9
|
imbi2d |
|- ( x = 0 -> ( ( ph -> -. (/) e. ( C ` x ) ) <-> ( ph -> -. (/) e. ( C ` 0 ) ) ) ) |
| 11 |
|
fveq2 |
|- ( x = k -> ( C ` x ) = ( C ` k ) ) |
| 12 |
11
|
eleq2d |
|- ( x = k -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` k ) ) ) |
| 13 |
12
|
notbid |
|- ( x = k -> ( -. (/) e. ( C ` x ) <-> -. (/) e. ( C ` k ) ) ) |
| 14 |
13
|
imbi2d |
|- ( x = k -> ( ( ph -> -. (/) e. ( C ` x ) ) <-> ( ph -> -. (/) e. ( C ` k ) ) ) ) |
| 15 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( C ` x ) = ( C ` ( k + 1 ) ) ) |
| 16 |
15
|
eleq2d |
|- ( x = ( k + 1 ) -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` ( k + 1 ) ) ) ) |
| 17 |
16
|
notbid |
|- ( x = ( k + 1 ) -> ( -. (/) e. ( C ` x ) <-> -. (/) e. ( C ` ( k + 1 ) ) ) ) |
| 18 |
17
|
imbi2d |
|- ( x = ( k + 1 ) -> ( ( ph -> -. (/) e. ( C ` x ) ) <-> ( ph -> -. (/) e. ( C ` ( k + 1 ) ) ) ) ) |
| 19 |
|
fveq2 |
|- ( x = N -> ( C ` x ) = ( C ` N ) ) |
| 20 |
19
|
eleq2d |
|- ( x = N -> ( (/) e. ( C ` x ) <-> (/) e. ( C ` N ) ) ) |
| 21 |
20
|
notbid |
|- ( x = N -> ( -. (/) e. ( C ` x ) <-> -. (/) e. ( C ` N ) ) ) |
| 22 |
21
|
imbi2d |
|- ( x = N -> ( ( ph -> -. (/) e. ( C ` x ) ) <-> ( ph -> -. (/) e. ( C ` N ) ) ) ) |
| 23 |
1 2 4
|
sadc0 |
|- ( ph -> -. (/) e. ( C ` 0 ) ) |
| 24 |
|
noel |
|- -. k e. (/) |
| 25 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> A C_ NN0 ) |
| 26 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> B C_ NN0 ) |
| 27 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> k e. NN0 ) |
| 28 |
25 26 4 27
|
sadcp1 |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( (/) e. ( C ` ( k + 1 ) ) <-> cadd ( k e. A , k e. B , (/) e. ( C ` k ) ) ) ) |
| 29 |
|
cad0 |
|- ( -. (/) e. ( C ` k ) -> ( cadd ( k e. A , k e. B , (/) e. ( C ` k ) ) <-> ( k e. A /\ k e. B ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( cadd ( k e. A , k e. B , (/) e. ( C ` k ) ) <-> ( k e. A /\ k e. B ) ) ) |
| 31 |
|
elin |
|- ( k e. ( A i^i B ) <-> ( k e. A /\ k e. B ) ) |
| 32 |
3
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( A i^i B ) = (/) ) |
| 33 |
32
|
eleq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( k e. ( A i^i B ) <-> k e. (/) ) ) |
| 34 |
31 33
|
bitr3id |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( ( k e. A /\ k e. B ) <-> k e. (/) ) ) |
| 35 |
28 30 34
|
3bitrd |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> ( (/) e. ( C ` ( k + 1 ) ) <-> k e. (/) ) ) |
| 36 |
24 35
|
mtbiri |
|- ( ( ( ph /\ k e. NN0 ) /\ -. (/) e. ( C ` k ) ) -> -. (/) e. ( C ` ( k + 1 ) ) ) |
| 37 |
36
|
ex |
|- ( ( ph /\ k e. NN0 ) -> ( -. (/) e. ( C ` k ) -> -. (/) e. ( C ` ( k + 1 ) ) ) ) |
| 38 |
37
|
expcom |
|- ( k e. NN0 -> ( ph -> ( -. (/) e. ( C ` k ) -> -. (/) e. ( C ` ( k + 1 ) ) ) ) ) |
| 39 |
38
|
a2d |
|- ( k e. NN0 -> ( ( ph -> -. (/) e. ( C ` k ) ) -> ( ph -> -. (/) e. ( C ` ( k + 1 ) ) ) ) ) |
| 40 |
10 14 18 22 23 39
|
nn0ind |
|- ( N e. NN0 -> ( ph -> -. (/) e. ( C ` N ) ) ) |
| 41 |
5 40
|
mpcom |
|- ( ph -> -. (/) e. ( C ` N ) ) |
| 42 |
|
hadrot |
|- ( hadd ( (/) e. ( C ` N ) , N e. A , N e. B ) <-> hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) ) |
| 43 |
|
had0 |
|- ( -. (/) e. ( C ` N ) -> ( hadd ( (/) e. ( C ` N ) , N e. A , N e. B ) <-> ( N e. A \/_ N e. B ) ) ) |
| 44 |
42 43
|
bitr3id |
|- ( -. (/) e. ( C ` N ) -> ( hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) <-> ( N e. A \/_ N e. B ) ) ) |
| 45 |
41 44
|
syl |
|- ( ph -> ( hadd ( N e. A , N e. B , (/) e. ( C ` N ) ) <-> ( N e. A \/_ N e. B ) ) ) |
| 46 |
|
noel |
|- -. N e. (/) |
| 47 |
|
elin |
|- ( N e. ( A i^i B ) <-> ( N e. A /\ N e. B ) ) |
| 48 |
3
|
eleq2d |
|- ( ph -> ( N e. ( A i^i B ) <-> N e. (/) ) ) |
| 49 |
47 48
|
bitr3id |
|- ( ph -> ( ( N e. A /\ N e. B ) <-> N e. (/) ) ) |
| 50 |
46 49
|
mtbiri |
|- ( ph -> -. ( N e. A /\ N e. B ) ) |
| 51 |
|
xor2 |
|- ( ( N e. A \/_ N e. B ) <-> ( ( N e. A \/ N e. B ) /\ -. ( N e. A /\ N e. B ) ) ) |
| 52 |
51
|
rbaib |
|- ( -. ( N e. A /\ N e. B ) -> ( ( N e. A \/_ N e. B ) <-> ( N e. A \/ N e. B ) ) ) |
| 53 |
50 52
|
syl |
|- ( ph -> ( ( N e. A \/_ N e. B ) <-> ( N e. A \/ N e. B ) ) ) |
| 54 |
|
elun |
|- ( N e. ( A u. B ) <-> ( N e. A \/ N e. B ) ) |
| 55 |
53 54
|
bitr4di |
|- ( ph -> ( ( N e. A \/_ N e. B ) <-> N e. ( A u. B ) ) ) |
| 56 |
6 45 55
|
3bitrd |
|- ( ph -> ( N e. ( A sadd B ) <-> N e. ( A u. B ) ) ) |