| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadeq.a |
|- ( ph -> A C_ NN0 ) |
| 2 |
|
sadeq.b |
|- ( ph -> B C_ NN0 ) |
| 3 |
|
sadeq.n |
|- ( ph -> N e. NN0 ) |
| 4 |
|
inass |
|- ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( A i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) |
| 5 |
|
inidm |
|- ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) = ( 0 ..^ N ) |
| 6 |
5
|
ineq2i |
|- ( A i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) = ( A i^i ( 0 ..^ N ) ) |
| 7 |
4 6
|
eqtri |
|- ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( A i^i ( 0 ..^ N ) ) |
| 8 |
7
|
fveq2i |
|- ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) |
| 9 |
|
inass |
|- ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( B i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) |
| 10 |
5
|
ineq2i |
|- ( B i^i ( ( 0 ..^ N ) i^i ( 0 ..^ N ) ) ) = ( B i^i ( 0 ..^ N ) ) |
| 11 |
9 10
|
eqtri |
|- ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) = ( B i^i ( 0 ..^ N ) ) |
| 12 |
11
|
fveq2i |
|- ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) |
| 13 |
8 12
|
oveq12i |
|- ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) |
| 14 |
13
|
oveq1i |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) |
| 15 |
|
inss1 |
|- ( A i^i ( 0 ..^ N ) ) C_ A |
| 16 |
15 1
|
sstrid |
|- ( ph -> ( A i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 17 |
|
inss1 |
|- ( B i^i ( 0 ..^ N ) ) C_ B |
| 18 |
17 2
|
sstrid |
|- ( ph -> ( B i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 19 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A i^i ( 0 ..^ N ) ) , m e. ( B i^i ( 0 ..^ N ) ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. ( A i^i ( 0 ..^ N ) ) , m e. ( B i^i ( 0 ..^ N ) ) , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 20 |
|
eqid |
|- `' ( bits |` NN0 ) = `' ( bits |` NN0 ) |
| 21 |
16 18 19 3 20
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( ( A i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( ( B i^i ( 0 ..^ N ) ) i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 22 |
|
eqid |
|- seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) = seq 0 ( ( c e. 2o , m e. NN0 |-> if ( cadd ( m e. A , m e. B , (/) e. c ) , 1o , (/) ) ) , ( n e. NN0 |-> if ( n = 0 , (/) , ( n - 1 ) ) ) ) |
| 23 |
1 2 22 3 20
|
sadadd3 |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( ( `' ( bits |` NN0 ) ` ( A i^i ( 0 ..^ N ) ) ) + ( `' ( bits |` NN0 ) ` ( B i^i ( 0 ..^ N ) ) ) ) mod ( 2 ^ N ) ) ) |
| 24 |
14 21 23
|
3eqtr4a |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) ) |
| 25 |
|
inss1 |
|- ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) |
| 26 |
|
sadcl |
|- ( ( ( A i^i ( 0 ..^ N ) ) C_ NN0 /\ ( B i^i ( 0 ..^ N ) ) C_ NN0 ) -> ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) C_ NN0 ) |
| 27 |
16 18 26
|
syl2anc |
|- ( ph -> ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) C_ NN0 ) |
| 28 |
25 27
|
sstrid |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 29 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
| 30 |
29
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
| 31 |
|
inss2 |
|- ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 32 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 33 |
30 31 32
|
sylancl |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 34 |
|
elfpw |
|- ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 35 |
28 33 34
|
sylanbrc |
|- ( ph -> ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 36 |
|
bitsf1o |
|- ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) |
| 37 |
|
f1ocnv |
|- ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 38 |
|
f1of |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 ) |
| 39 |
36 37 38
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) --> NN0 |
| 40 |
39
|
ffvelcdmi |
|- ( ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 41 |
35 40
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 42 |
41
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 43 |
|
2rp |
|- 2 e. RR+ |
| 44 |
43
|
a1i |
|- ( ph -> 2 e. RR+ ) |
| 45 |
3
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 46 |
44 45
|
rpexpcld |
|- ( ph -> ( 2 ^ N ) e. RR+ ) |
| 47 |
41
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 48 |
41
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) ) |
| 49 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
| 50 |
36 35 49
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
| 51 |
48 50
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |
| 52 |
51 31
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
| 53 |
41
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 54 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 55 |
53 3 54
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 56 |
52 55
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 57 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 58 |
56 57
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 59 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 60 |
42 46 47 58 59
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 61 |
|
inss1 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( A sadd B ) |
| 62 |
|
sadcl |
|- ( ( A C_ NN0 /\ B C_ NN0 ) -> ( A sadd B ) C_ NN0 ) |
| 63 |
1 2 62
|
syl2anc |
|- ( ph -> ( A sadd B ) C_ NN0 ) |
| 64 |
61 63
|
sstrid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 ) |
| 65 |
|
inss2 |
|- ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) |
| 66 |
|
ssfi |
|- ( ( ( 0 ..^ N ) e. Fin /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ ( 0 ..^ N ) ) -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 67 |
30 65 66
|
sylancl |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) |
| 68 |
|
elfpw |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) <-> ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) C_ NN0 /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. Fin ) ) |
| 69 |
64 67 68
|
sylanbrc |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) |
| 70 |
39
|
ffvelcdmi |
|- ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 71 |
69 70
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. NN0 ) |
| 72 |
71
|
nn0red |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR ) |
| 73 |
71
|
nn0ge0d |
|- ( ph -> 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
| 74 |
71
|
fvresd |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) ) |
| 75 |
|
f1ocnvfv2 |
|- ( ( ( bits |` NN0 ) : NN0 -1-1-onto-> ( ~P NN0 i^i Fin ) /\ ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
| 76 |
36 69 75
|
sylancr |
|- ( ph -> ( ( bits |` NN0 ) ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
| 77 |
74 76
|
eqtr3d |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) = ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) |
| 78 |
77 65
|
eqsstrdi |
|- ( ph -> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) |
| 79 |
71
|
nn0zd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ZZ ) |
| 80 |
|
bitsfzo |
|- ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ZZ /\ N e. NN0 ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 81 |
79 3 80
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) <-> ( bits ` ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) C_ ( 0 ..^ N ) ) ) |
| 82 |
78 81
|
mpbird |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) ) |
| 83 |
|
elfzolt2 |
|- ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. ( 0 ..^ ( 2 ^ N ) ) -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 84 |
82 83
|
syl |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) |
| 85 |
|
modid |
|- ( ( ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) e. RR /\ ( 2 ^ N ) e. RR+ ) /\ ( 0 <_ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) /\ ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) < ( 2 ^ N ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
| 86 |
72 46 73 84 85
|
syl22anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) mod ( 2 ^ N ) ) = ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) ) |
| 87 |
24 60 86
|
3eqtr3rd |
|- ( ph -> ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 88 |
|
f1of1 |
|- ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 -> `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 ) |
| 89 |
36 37 88
|
mp2b |
|- `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 |
| 90 |
|
f1fveq |
|- ( ( `' ( bits |` NN0 ) : ( ~P NN0 i^i Fin ) -1-1-> NN0 /\ ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 91 |
89 90
|
mpan |
|- ( ( ( ( A sadd B ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) /\ ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) e. ( ~P NN0 i^i Fin ) ) -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 92 |
69 35 91
|
syl2anc |
|- ( ph -> ( ( `' ( bits |` NN0 ) ` ( ( A sadd B ) i^i ( 0 ..^ N ) ) ) = ( `' ( bits |` NN0 ) ` ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) <-> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) ) |
| 93 |
87 92
|
mpbid |
|- ( ph -> ( ( A sadd B ) i^i ( 0 ..^ N ) ) = ( ( ( A i^i ( 0 ..^ N ) ) sadd ( B i^i ( 0 ..^ N ) ) ) i^i ( 0 ..^ N ) ) ) |