| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | satefv |  |-  ( ( (/) e. _V /\ U e. V ) -> ( (/) SatE U ) = ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( U e. V -> ( (/) SatE U ) = ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) ) | 
						
							| 4 |  | xp0 |  |-  ( (/) X. (/) ) = (/) | 
						
							| 5 | 4 | ineq2i |  |-  ( _E i^i ( (/) X. (/) ) ) = ( _E i^i (/) ) | 
						
							| 6 |  | in0 |  |-  ( _E i^i (/) ) = (/) | 
						
							| 7 | 5 6 | eqtri |  |-  ( _E i^i ( (/) X. (/) ) ) = (/) | 
						
							| 8 | 7 | oveq2i |  |-  ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) = ( (/) Sat (/) ) | 
						
							| 9 | 8 | fveq1i |  |-  ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) = ( ( (/) Sat (/) ) ` _om ) | 
						
							| 10 | 9 | fveq1i |  |-  ( ( ( (/) Sat ( _E i^i ( (/) X. (/) ) ) ) ` _om ) ` U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) | 
						
							| 11 | 3 10 | eqtrdi |  |-  ( U e. V -> ( (/) SatE U ) = ( ( ( (/) Sat (/) ) ` _om ) ` U ) ) |