Step |
Hyp |
Ref |
Expression |
1 |
|
satf0suc.s |
|- S = ( (/) Sat (/) ) |
2 |
1
|
fveq1i |
|- ( S ` suc N ) = ( ( (/) Sat (/) ) ` suc N ) |
3 |
2
|
a1i |
|- ( N e. _om -> ( S ` suc N ) = ( ( (/) Sat (/) ) ` suc N ) ) |
4 |
|
omsucelsucb |
|- ( N e. _om <-> suc N e. suc _om ) |
5 |
|
satf0sucom |
|- ( suc N e. suc _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
6 |
4 5
|
sylbi |
|- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
7 |
|
nnon |
|- ( N e. _om -> N e. On ) |
8 |
|
rdgsuc |
|- ( N e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
9 |
7 8
|
syl |
|- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
10 |
|
elelsuc |
|- ( N e. _om -> N e. suc _om ) |
11 |
|
satf0sucom |
|- ( N e. suc _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
12 |
10 11
|
syl |
|- ( N e. _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
13 |
1
|
eqcomi |
|- ( (/) Sat (/) ) = S |
14 |
13
|
fveq1i |
|- ( ( (/) Sat (/) ) ` N ) = ( S ` N ) |
15 |
12 14
|
eqtr3di |
|- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( S ` N ) ) |
16 |
15
|
fveq2d |
|- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( S ` N ) ) ) |
17 |
|
eqidd |
|- ( N e. _om -> ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
18 |
|
id |
|- ( f = ( S ` N ) -> f = ( S ` N ) ) |
19 |
|
rexeq |
|- ( f = ( S ` N ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
20 |
19
|
orbi1d |
|- ( f = ( S ` N ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
21 |
20
|
rexeqbi1dv |
|- ( f = ( S ` N ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
22 |
21
|
anbi2d |
|- ( f = ( S ` N ) -> ( ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
23 |
22
|
opabbidv |
|- ( f = ( S ` N ) -> { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
24 |
18 23
|
uneq12d |
|- ( f = ( S ` N ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
25 |
24
|
adantl |
|- ( ( N e. _om /\ f = ( S ` N ) ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
26 |
|
fvex |
|- ( S ` N ) e. _V |
27 |
26
|
a1i |
|- ( N e. _om -> ( S ` N ) e. _V ) |
28 |
|
omex |
|- _om e. _V |
29 |
|
satf0suclem |
|- ( ( ( S ` N ) e. _V /\ ( S ` N ) e. _V /\ _om e. _V ) -> { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
30 |
26 26 28 29
|
mp3an |
|- { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V |
31 |
26 30
|
unex |
|- ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V |
32 |
31
|
a1i |
|- ( N e. _om -> ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
33 |
17 25 27 32
|
fvmptd |
|- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( S ` N ) ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
34 |
9 16 33
|
3eqtrd |
|- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
35 |
3 6 34
|
3eqtrd |
|- ( N e. _om -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( S ` N ) ( E. v e. ( S ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |