Step |
Hyp |
Ref |
Expression |
1 |
|
satfbrsuc.s |
|- S = ( M Sat E ) |
2 |
|
satfbrsuc.p |
|- P = ( S ` N ) |
3 |
1
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
4 |
3
|
3expa |
|- ( ( ( M e. V /\ E e. W ) /\ N e. _om ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
5 |
4
|
3adant3 |
|- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( S ` suc N ) = ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
6 |
5
|
breqd |
|- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B ) ) |
7 |
|
brun |
|- ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) ) |
8 |
2
|
eqcomi |
|- ( S ` N ) = P |
9 |
8
|
breqi |
|- ( A ( S ` N ) B <-> A P B ) |
10 |
9
|
a1i |
|- ( ( A e. X /\ B e. Y ) -> ( A ( S ` N ) B <-> A P B ) ) |
11 |
|
eqeq1 |
|- ( x = A -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> A = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
12 |
|
eqeq1 |
|- ( y = B -> ( y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) <-> B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
13 |
11 12
|
bi2anan9 |
|- ( ( x = A /\ y = B ) -> ( ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
14 |
13
|
rexbidv |
|- ( ( x = A /\ y = B ) -> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) ) |
15 |
|
eqeq1 |
|- ( x = A -> ( x = A.g i ( 1st ` u ) <-> A = A.g i ( 1st ` u ) ) ) |
16 |
|
eqeq1 |
|- ( y = B -> ( y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } <-> B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) |
17 |
15 16
|
bi2anan9 |
|- ( ( x = A /\ y = B ) -> ( ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
18 |
17
|
rexbidv |
|- ( ( x = A /\ y = B ) -> ( E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) <-> E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
19 |
14 18
|
orbi12d |
|- ( ( x = A /\ y = B ) -> ( ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
20 |
19
|
rexbidv |
|- ( ( x = A /\ y = B ) -> ( E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
21 |
8
|
rexeqi |
|- ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) <-> E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) ) |
22 |
21
|
orbi1i |
|- ( ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
23 |
8 22
|
rexeqbii |
|- ( E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) <-> E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) |
24 |
23
|
opabbii |
|- { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } = { <. x , y >. | E. u e. P ( E. v e. P ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
25 |
20 24
|
brabga |
|- ( ( A e. X /\ B e. Y ) -> ( A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B <-> E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) |
26 |
10 25
|
orbi12d |
|- ( ( A e. X /\ B e. Y ) -> ( ( A ( S ` N ) B \/ A { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } B ) <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
27 |
7 26
|
syl5bb |
|- ( ( A e. X /\ B e. Y ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
28 |
27
|
3ad2ant3 |
|- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( ( S ` N ) u. { <. x , y >. | E. u e. ( S ` N ) ( E. v e. ( S ` N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |
29 |
6 28
|
bitrd |
|- ( ( ( M e. V /\ E e. W ) /\ N e. _om /\ ( A e. X /\ B e. Y ) ) -> ( A ( S ` suc N ) B <-> ( A P B \/ E. u e. P ( E. v e. P ( A = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ B = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( A = A.g i ( 1st ` u ) /\ B = { f e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( f |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) ) ) ) |