Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
1 1
|
pm3.2i |
|- ( (/) e. _V /\ (/) e. _V ) |
3 |
2
|
jctr |
|- ( ( M e. V /\ E e. W ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) |
4 |
3
|
3adant3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) |
5 |
|
satfdm |
|- ( ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
6 |
4 5
|
syl |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) |
7 |
|
fveq2 |
|- ( n = N -> ( ( M Sat E ) ` n ) = ( ( M Sat E ) ` N ) ) |
8 |
7
|
dmeqd |
|- ( n = N -> dom ( ( M Sat E ) ` n ) = dom ( ( M Sat E ) ` N ) ) |
9 |
|
fveq2 |
|- ( n = N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` N ) ) |
10 |
9
|
dmeqd |
|- ( n = N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` N ) ) |
11 |
8 10
|
eqeq12d |
|- ( n = N -> ( dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) <-> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
12 |
11
|
rspcv |
|- ( N e. _om -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) |
14 |
6 13
|
mpd |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
15 |
|
elelsuc |
|- ( N e. _om -> N e. suc _om ) |
16 |
15
|
3ad2ant3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> N e. suc _om ) |
17 |
|
fmlafv |
|- ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
18 |
16 17
|
syl |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
19 |
14 18
|
eqtr4d |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |