| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 | 1 1 | pm3.2i |  |-  ( (/) e. _V /\ (/) e. _V ) | 
						
							| 3 | 2 | jctr |  |-  ( ( M e. V /\ E e. W ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) ) | 
						
							| 5 |  | satfdm |  |-  ( ( ( M e. V /\ E e. W ) /\ ( (/) e. _V /\ (/) e. _V ) ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) ) | 
						
							| 7 |  | fveq2 |  |-  ( n = N -> ( ( M Sat E ) ` n ) = ( ( M Sat E ) ` N ) ) | 
						
							| 8 | 7 | dmeqd |  |-  ( n = N -> dom ( ( M Sat E ) ` n ) = dom ( ( M Sat E ) ` N ) ) | 
						
							| 9 |  | fveq2 |  |-  ( n = N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` N ) ) | 
						
							| 10 | 9 | dmeqd |  |-  ( n = N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` N ) ) | 
						
							| 11 | 8 10 | eqeq12d |  |-  ( n = N -> ( dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) <-> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) | 
						
							| 12 | 11 | rspcv |  |-  ( N e. _om -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ( A. n e. _om dom ( ( M Sat E ) ` n ) = dom ( ( (/) Sat (/) ) ` n ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) ) | 
						
							| 14 | 6 13 | mpd |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) | 
						
							| 15 |  | elelsuc |  |-  ( N e. _om -> N e. suc _om ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> N e. suc _om ) | 
						
							| 17 |  | fmlafv |  |-  ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) | 
						
							| 19 | 14 18 | eqtr4d |  |-  ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |