Step |
Hyp |
Ref |
Expression |
1 |
|
satfv0fun |
|- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` (/) ) ) |
2 |
1
|
3adant3 |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` (/) ) ) |
3 |
|
fveq2 |
|- ( N = (/) -> ( ( M Sat E ) ` N ) = ( ( M Sat E ) ` (/) ) ) |
4 |
3
|
funeqd |
|- ( N = (/) -> ( Fun ( ( M Sat E ) ` N ) <-> Fun ( ( M Sat E ) ` (/) ) ) ) |
5 |
2 4
|
syl5ibr |
|- ( N = (/) -> ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) ) |
6 |
|
df-ne |
|- ( N =/= (/) <-> -. N = (/) ) |
7 |
|
nnsuc |
|- ( ( N e. _om /\ N =/= (/) ) -> E. n e. _om N = suc n ) |
8 |
|
suceq |
|- ( x = (/) -> suc x = suc (/) ) |
9 |
8
|
fveq2d |
|- ( x = (/) -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc (/) ) ) |
10 |
9
|
funeqd |
|- ( x = (/) -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc (/) ) ) ) |
11 |
10
|
imbi2d |
|- ( x = (/) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) ) ) |
12 |
|
suceq |
|- ( x = y -> suc x = suc y ) |
13 |
12
|
fveq2d |
|- ( x = y -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc y ) ) |
14 |
13
|
funeqd |
|- ( x = y -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc y ) ) ) |
15 |
14
|
imbi2d |
|- ( x = y -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) ) ) |
16 |
|
suceq |
|- ( x = suc y -> suc x = suc suc y ) |
17 |
16
|
fveq2d |
|- ( x = suc y -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc suc y ) ) |
18 |
17
|
funeqd |
|- ( x = suc y -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc suc y ) ) ) |
19 |
18
|
imbi2d |
|- ( x = suc y -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
20 |
|
suceq |
|- ( x = n -> suc x = suc n ) |
21 |
20
|
fveq2d |
|- ( x = n -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc n ) ) |
22 |
21
|
funeqd |
|- ( x = n -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc n ) ) ) |
23 |
22
|
imbi2d |
|- ( x = n -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
24 |
|
satffunlem1 |
|- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) |
25 |
|
pm2.27 |
|- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> Fun ( ( M Sat E ) ` suc y ) ) ) |
26 |
|
satffunlem2 |
|- ( ( y e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc y ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) |
27 |
26
|
expcom |
|- ( ( M e. V /\ E e. W ) -> ( y e. _om -> ( Fun ( ( M Sat E ) ` suc y ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
28 |
27
|
com23 |
|- ( ( M e. V /\ E e. W ) -> ( Fun ( ( M Sat E ) ` suc y ) -> ( y e. _om -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
29 |
25 28
|
syld |
|- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> ( y e. _om -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
30 |
29
|
com13 |
|- ( y e. _om -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
31 |
11 15 19 23 24 30
|
finds |
|- ( n e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) |
32 |
31
|
adantr |
|- ( ( n e. _om /\ N = suc n ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) |
33 |
|
fveq2 |
|- ( N = suc n -> ( ( M Sat E ) ` N ) = ( ( M Sat E ) ` suc n ) ) |
34 |
33
|
funeqd |
|- ( N = suc n -> ( Fun ( ( M Sat E ) ` N ) <-> Fun ( ( M Sat E ) ` suc n ) ) ) |
35 |
34
|
imbi2d |
|- ( N = suc n -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
36 |
35
|
adantl |
|- ( ( n e. _om /\ N = suc n ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
37 |
32 36
|
mpbird |
|- ( ( n e. _om /\ N = suc n ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
38 |
37
|
rexlimiva |
|- ( E. n e. _om N = suc n -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
39 |
7 38
|
syl |
|- ( ( N e. _om /\ N =/= (/) ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
40 |
39
|
expcom |
|- ( N =/= (/) -> ( N e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
41 |
6 40
|
sylbir |
|- ( -. N = (/) -> ( N e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
42 |
41
|
com13 |
|- ( ( M e. V /\ E e. W ) -> ( N e. _om -> ( -. N = (/) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
43 |
42
|
3impia |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( -. N = (/) -> Fun ( ( M Sat E ) ` N ) ) ) |
44 |
43
|
com12 |
|- ( -. N = (/) -> ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) ) |
45 |
5 44
|
pm2.61i |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) |