| Step |
Hyp |
Ref |
Expression |
| 1 |
|
satffunlem2lem2.s |
|- S = ( M Sat E ) |
| 2 |
|
satffunlem2lem2.a |
|- A = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) |
| 3 |
|
satffunlem2lem2.b |
|- B = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } |
| 4 |
1
|
fveq1i |
|- ( S ` suc N ) = ( ( M Sat E ) ` suc N ) |
| 5 |
4
|
dmeqi |
|- dom ( S ` suc N ) = dom ( ( M Sat E ) ` suc N ) |
| 6 |
|
simprl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> M e. V ) |
| 7 |
|
simprr |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> E e. W ) |
| 8 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
| 9 |
8
|
adantr |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> suc N e. _om ) |
| 10 |
6 7 9
|
3jca |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) |
| 11 |
|
satfdmfmla |
|- ( ( M e. V /\ E e. W /\ suc N e. _om ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) |
| 12 |
10 11
|
syl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) |
| 13 |
12
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) |
| 14 |
5 13
|
eqtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( S ` suc N ) = ( Fmla ` suc N ) ) |
| 15 |
|
ovex |
|- ( M ^m _om ) e. _V |
| 16 |
15
|
difexi |
|- ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) e. _V |
| 17 |
2 16
|
eqeltri |
|- A e. _V |
| 18 |
17
|
a1i |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> A e. _V ) |
| 19 |
18
|
ralrimiva |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> A. v e. ( S ` suc N ) A e. _V ) |
| 20 |
3 15
|
rabex2 |
|- B e. _V |
| 21 |
20
|
a1i |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) /\ i e. _om ) -> B e. _V ) |
| 22 |
21
|
ralrimiva |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> A. i e. _om B e. _V ) |
| 23 |
19 22
|
jca |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` suc N ) ) -> ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) ) |
| 24 |
23
|
ralrimiva |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> A. u e. ( S ` suc N ) ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) ) |
| 25 |
|
simplr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W ) ) |
| 26 |
8
|
ancri |
|- ( N e. _om -> ( suc N e. _om /\ N e. _om ) ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( suc N e. _om /\ N e. _om ) ) |
| 28 |
25 27
|
jca |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) ) |
| 29 |
|
sssucid |
|- N C_ suc N |
| 30 |
1
|
satfsschain |
|- ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( S ` N ) C_ ( S ` suc N ) ) ) |
| 31 |
28 29 30
|
mpisyl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( S ` N ) C_ ( S ` suc N ) ) |
| 32 |
|
dmopab3rexdif |
|- ( ( A. u e. ( S ` suc N ) ( A. v e. ( S ` suc N ) A e. _V /\ A. i e. _om B e. _V ) /\ ( S ` N ) C_ ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } ) |
| 33 |
24 31 32
|
syl2anc |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } ) |
| 34 |
|
simpr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) |
| 35 |
|
fveqeq2 |
|- ( w = u -> ( ( 1st ` w ) = ( 1st ` u ) <-> ( 1st ` u ) = ( 1st ` u ) ) ) |
| 36 |
35
|
adantl |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) /\ w = u ) -> ( ( 1st ` w ) = ( 1st ` u ) <-> ( 1st ` u ) = ( 1st ` u ) ) ) |
| 37 |
|
eqidd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` u ) = ( 1st ` u ) ) |
| 38 |
34 36 37
|
rspcedvd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) |
| 39 |
4
|
funeqi |
|- ( Fun ( S ` suc N ) <-> Fun ( ( M Sat E ) ` suc N ) ) |
| 40 |
39
|
biimpi |
|- ( Fun ( S ` suc N ) -> Fun ( ( M Sat E ) ` suc N ) ) |
| 41 |
40
|
adantl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Fun ( ( M Sat E ) ` suc N ) ) |
| 42 |
1
|
fveq1i |
|- ( S ` N ) = ( ( M Sat E ) ` N ) |
| 43 |
31 42 4
|
3sstr3g |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
| 44 |
41 43
|
jca |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
| 46 |
|
funeldmdif |
|- ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) ) |
| 47 |
45 46
|
syl |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. w e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` w ) = ( 1st ` u ) ) ) |
| 48 |
38 47
|
mpbird |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) |
| 49 |
48
|
ex |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) -> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 50 |
4 42
|
difeq12i |
|- ( ( S ` suc N ) \ ( S ` N ) ) = ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) |
| 51 |
50
|
eleq2i |
|- ( u e. ( ( S ` suc N ) \ ( S ` N ) ) <-> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) |
| 52 |
51
|
a1i |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) <-> u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) ) |
| 53 |
13
|
eqcomd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) |
| 54 |
|
simpl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> N e. _om ) |
| 55 |
6 7 54
|
3jca |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( M e. V /\ E e. W /\ N e. _om ) ) |
| 56 |
|
satfdmfmla |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
| 57 |
55 56
|
syl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
| 58 |
57
|
eqcomd |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) |
| 59 |
58
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) |
| 60 |
53 59
|
difeq12d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) |
| 61 |
60
|
eleq2d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` u ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 62 |
49 52 61
|
3imtr4d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( u e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) |
| 63 |
62
|
imp |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( 1st ` u ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) |
| 65 |
|
oveq1 |
|- ( f = ( 1st ` u ) -> ( f |g g ) = ( ( 1st ` u ) |g g ) ) |
| 66 |
65
|
eqeq2d |
|- ( f = ( 1st ` u ) -> ( x = ( f |g g ) <-> x = ( ( 1st ` u ) |g g ) ) ) |
| 67 |
66
|
rexbidv |
|- ( f = ( 1st ` u ) -> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) <-> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) ) |
| 68 |
|
eqidd |
|- ( f = ( 1st ` u ) -> i = i ) |
| 69 |
|
id |
|- ( f = ( 1st ` u ) -> f = ( 1st ` u ) ) |
| 70 |
68 69
|
goaleq12d |
|- ( f = ( 1st ` u ) -> A.g i f = A.g i ( 1st ` u ) ) |
| 71 |
70
|
eqeq2d |
|- ( f = ( 1st ` u ) -> ( x = A.g i f <-> x = A.g i ( 1st ` u ) ) ) |
| 72 |
71
|
rexbidv |
|- ( f = ( 1st ` u ) -> ( E. i e. _om x = A.g i f <-> E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 73 |
67 72
|
orbi12d |
|- ( f = ( 1st ` u ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 74 |
73
|
adantl |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) /\ f = ( 1st ` u ) ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) <-> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 75 |
6
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> M e. V ) |
| 76 |
7
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> E e. W ) |
| 77 |
8
|
ad2antrr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> suc N e. _om ) |
| 78 |
75 76 77
|
3jca |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) |
| 79 |
|
satfrel |
|- ( ( M e. V /\ E e. W /\ suc N e. _om ) -> Rel ( ( M Sat E ) ` suc N ) ) |
| 80 |
78 79
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` suc N ) ) |
| 81 |
4
|
releqi |
|- ( Rel ( S ` suc N ) <-> Rel ( ( M Sat E ) ` suc N ) ) |
| 82 |
80 81
|
sylibr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( S ` suc N ) ) |
| 83 |
|
1stdm |
|- ( ( Rel ( S ` suc N ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. dom ( S ` suc N ) ) |
| 84 |
82 83
|
sylan |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. dom ( S ` suc N ) ) |
| 85 |
14
|
eqcomd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( S ` suc N ) ) |
| 86 |
85
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( S ` suc N ) ) |
| 87 |
84 86
|
eleqtrrd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( S ` suc N ) ) -> ( 1st ` v ) e. ( Fmla ` suc N ) ) |
| 88 |
87
|
ad4ant13 |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( Fmla ` suc N ) ) |
| 89 |
|
oveq2 |
|- ( g = ( 1st ` v ) -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 90 |
89
|
eqeq2d |
|- ( g = ( 1st ` v ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 91 |
90
|
adantl |
|- ( ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 92 |
|
simpr |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 93 |
88 91 92
|
rspcedvd |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ v e. ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) |
| 94 |
93
|
rexlimdva2 |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) ) ) |
| 95 |
94
|
orim1d |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 96 |
95
|
imp |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 97 |
64 74 96
|
rspcedvd |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) |
| 98 |
97
|
rexlimdva2 |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 99 |
55
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ N e. _om ) ) |
| 100 |
|
satfrel |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> Rel ( ( M Sat E ) ` N ) ) |
| 101 |
99 100
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` N ) ) |
| 102 |
42
|
releqi |
|- ( Rel ( S ` N ) <-> Rel ( ( M Sat E ) ` N ) ) |
| 103 |
101 102
|
sylibr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( S ` N ) ) |
| 104 |
|
1stdm |
|- ( ( Rel ( S ` N ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. dom ( S ` N ) ) |
| 105 |
103 104
|
sylan |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. dom ( S ` N ) ) |
| 106 |
42
|
dmeqi |
|- dom ( S ` N ) = dom ( ( M Sat E ) ` N ) |
| 107 |
99 56
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
| 108 |
106 107
|
eqtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( S ` N ) = ( Fmla ` N ) ) |
| 109 |
108
|
eqcomd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( S ` N ) ) |
| 110 |
109
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( Fmla ` N ) = dom ( S ` N ) ) |
| 111 |
105 110
|
eleqtrrd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( 1st ` u ) e. ( Fmla ` N ) ) |
| 112 |
111
|
adantr |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` u ) e. ( Fmla ` N ) ) |
| 113 |
66
|
rexbidv |
|- ( f = ( 1st ` u ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) ) |
| 114 |
113
|
adantl |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ f = ( 1st ` u ) ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) ) |
| 115 |
|
simpr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) |
| 116 |
|
fveqeq2 |
|- ( t = v -> ( ( 1st ` t ) = ( 1st ` v ) <-> ( 1st ` v ) = ( 1st ` v ) ) ) |
| 117 |
116
|
adantl |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) /\ t = v ) -> ( ( 1st ` t ) = ( 1st ` v ) <-> ( 1st ` v ) = ( 1st ` v ) ) ) |
| 118 |
|
eqidd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` v ) = ( 1st ` v ) ) |
| 119 |
115 117 118
|
rspcedvd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) |
| 120 |
44
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
| 121 |
|
funeldmdif |
|- ( ( Fun ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) ) |
| 122 |
120 121
|
syl |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) <-> E. t e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` t ) = ( 1st ` v ) ) ) |
| 123 |
119 122
|
mpbird |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) -> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) |
| 124 |
123
|
ex |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) -> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 125 |
50
|
eleq2i |
|- ( v e. ( ( S ` suc N ) \ ( S ` N ) ) <-> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) |
| 126 |
125
|
a1i |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) <-> v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ) ) |
| 127 |
12
|
eqcomd |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) |
| 128 |
127 58
|
difeq12d |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) |
| 129 |
128
|
eleq2d |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> ( ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 130 |
129
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> ( 1st ` v ) e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 131 |
124 126 130
|
3imtr4d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) |
| 132 |
131
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) -> ( v e. ( ( S ` suc N ) \ ( S ` N ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) ) |
| 133 |
132
|
imp |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) |
| 134 |
133
|
adantr |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( 1st ` v ) e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ) |
| 135 |
90
|
adantl |
|- ( ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) /\ g = ( 1st ` v ) ) -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 136 |
|
simpr |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 137 |
134 135 136
|
rspcedvd |
|- ( ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ v e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) |
| 138 |
137
|
r19.29an |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) ) |
| 139 |
112 114 138
|
rspcedvd |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( S ` N ) ) /\ E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) |
| 140 |
139
|
rexlimdva2 |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) -> E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) |
| 141 |
98 140
|
orim12d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) -> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) ) |
| 142 |
10
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( M e. V /\ E e. W /\ suc N e. _om ) ) |
| 143 |
11
|
eqcomd |
|- ( ( M e. V /\ E e. W /\ suc N e. _om ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) |
| 144 |
142 143
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) |
| 145 |
107
|
eqcomd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` N ) = dom ( ( M Sat E ) ` N ) ) |
| 146 |
144 145
|
difeq12d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) = ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) |
| 147 |
146
|
eleq2d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 148 |
|
eqid |
|- ( M Sat E ) = ( M Sat E ) |
| 149 |
148
|
satfsschain |
|- ( ( ( M e. V /\ E e. W ) /\ ( suc N e. _om /\ N e. _om ) ) -> ( N C_ suc N -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) ) |
| 150 |
28 29 149
|
mpisyl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) |
| 151 |
|
releldmdifi |
|- ( ( Rel ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) |
| 152 |
80 150 151
|
syl2anc |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) |
| 153 |
147 152
|
sylbid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f ) ) |
| 154 |
50
|
eqcomi |
|- ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) = ( ( S ` suc N ) \ ( S ` N ) ) |
| 155 |
154
|
rexeqi |
|- ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f <-> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f ) |
| 156 |
|
r19.41v |
|- ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) <-> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 157 |
|
oveq1 |
|- ( ( 1st ` u ) = f -> ( ( 1st ` u ) |g g ) = ( f |g g ) ) |
| 158 |
157
|
eqeq2d |
|- ( ( 1st ` u ) = f -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( f |g g ) ) ) |
| 159 |
158
|
rexbidv |
|- ( ( 1st ` u ) = f -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( Fmla ` suc N ) x = ( f |g g ) ) ) |
| 160 |
|
eqidd |
|- ( ( 1st ` u ) = f -> i = i ) |
| 161 |
|
id |
|- ( ( 1st ` u ) = f -> ( 1st ` u ) = f ) |
| 162 |
160 161
|
goaleq12d |
|- ( ( 1st ` u ) = f -> A.g i ( 1st ` u ) = A.g i f ) |
| 163 |
162
|
eqeq2d |
|- ( ( 1st ` u ) = f -> ( x = A.g i ( 1st ` u ) <-> x = A.g i f ) ) |
| 164 |
163
|
rexbidv |
|- ( ( 1st ` u ) = f -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om x = A.g i f ) ) |
| 165 |
159 164
|
orbi12d |
|- ( ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 166 |
165
|
adantl |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) ) |
| 167 |
142 11
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom ( ( M Sat E ) ` suc N ) = ( Fmla ` suc N ) ) |
| 168 |
167
|
eqcomd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( Fmla ` suc N ) = dom ( ( M Sat E ) ` suc N ) ) |
| 169 |
168
|
eleq2d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) <-> g e. dom ( ( M Sat E ) ` suc N ) ) ) |
| 170 |
|
releldm2 |
|- ( Rel ( ( M Sat E ) ` suc N ) -> ( g e. dom ( ( M Sat E ) ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) |
| 171 |
80 170
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. dom ( ( M Sat E ) ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) |
| 172 |
169 171
|
bitrd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) <-> E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g ) ) |
| 173 |
|
r19.41v |
|- ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) |
| 174 |
1
|
eqcomi |
|- ( M Sat E ) = S |
| 175 |
174
|
fveq1i |
|- ( ( M Sat E ) ` suc N ) = ( S ` suc N ) |
| 176 |
175
|
rexeqi |
|- ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) <-> E. v e. ( S ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) ) |
| 177 |
89
|
eqcoms |
|- ( ( 1st ` v ) = g -> ( ( 1st ` u ) |g g ) = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 178 |
177
|
eqeq2d |
|- ( ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) <-> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 179 |
178
|
biimpa |
|- ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) |
| 180 |
179
|
a1i |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 181 |
180
|
reximdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( S ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 182 |
176 181
|
biimtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( M Sat E ) ` suc N ) ( ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 183 |
173 182
|
biimtrrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g /\ x = ( ( 1st ` u ) |g g ) ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 184 |
183
|
expd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( M Sat E ) ` suc N ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 185 |
172 184
|
sylbid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( Fmla ` suc N ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 186 |
185
|
rexlimdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 187 |
186
|
ad2antrr |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 188 |
187
|
orim1d |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( ( 1st ` u ) |g g ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 189 |
166 188
|
sylbird |
|- ( ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) /\ ( 1st ` u ) = f ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 190 |
189
|
expimpd |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ u e. ( ( S ` suc N ) \ ( S ` N ) ) ) -> ( ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 191 |
190
|
reximdva |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 192 |
156 191
|
biimtrrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f /\ ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 193 |
192
|
expd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 194 |
155 193
|
biimtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` u ) = f -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 195 |
153 194
|
syld |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> ( ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 196 |
195
|
rexlimdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) -> E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 197 |
145
|
eleq2d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) <-> f e. dom ( ( M Sat E ) ` N ) ) ) |
| 198 |
55 100
|
syl |
|- ( ( N e. _om /\ ( M e. V /\ E e. W ) ) -> Rel ( ( M Sat E ) ` N ) ) |
| 199 |
198
|
adantr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> Rel ( ( M Sat E ) ` N ) ) |
| 200 |
|
releldm2 |
|- ( Rel ( ( M Sat E ) ` N ) -> ( f e. dom ( ( M Sat E ) ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) |
| 201 |
199 200
|
syl |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. dom ( ( M Sat E ) ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) |
| 202 |
197 201
|
bitrd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) <-> E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f ) ) |
| 203 |
|
r19.41v |
|- ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) <-> ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) |
| 204 |
42
|
eqcomi |
|- ( ( M Sat E ) ` N ) = ( S ` N ) |
| 205 |
204
|
rexeqi |
|- ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) <-> E. u e. ( S ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) |
| 206 |
158
|
rexbidv |
|- ( ( 1st ` u ) = f -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) |
| 207 |
206
|
adantl |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) <-> E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) |
| 208 |
146
|
eleq2d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) <-> g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) ) ) |
| 209 |
|
releldmdifi |
|- ( ( Rel ( ( M Sat E ) ` suc N ) /\ ( ( M Sat E ) ` N ) C_ ( ( M Sat E ) ` suc N ) ) -> ( g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) |
| 210 |
80 150 209
|
syl2anc |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( dom ( ( M Sat E ) ` suc N ) \ dom ( ( M Sat E ) ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) |
| 211 |
208 210
|
sylbid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g ) ) |
| 212 |
154
|
rexeqi |
|- ( E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g <-> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g ) |
| 213 |
178
|
biimpcd |
|- ( x = ( ( 1st ` u ) |g g ) -> ( ( 1st ` v ) = g -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 214 |
213
|
adantl |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g g ) ) -> ( ( 1st ` v ) = g -> x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 215 |
214
|
reximdv |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ x = ( ( 1st ` u ) |g g ) ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 216 |
215
|
ex |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( x = ( ( 1st ` u ) |g g ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 217 |
216
|
com23 |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 218 |
212 217
|
biimtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. v e. ( ( ( M Sat E ) ` suc N ) \ ( ( M Sat E ) ` N ) ) ( 1st ` v ) = g -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 219 |
211 218
|
syld |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) -> ( x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 220 |
219
|
rexlimdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 221 |
220
|
adantr |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( ( 1st ` u ) |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 222 |
207 221
|
sylbird |
|- ( ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) /\ ( 1st ` u ) = f ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 223 |
222
|
expimpd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 224 |
223
|
reximdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( S ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 225 |
205 224
|
biimtrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 226 |
203 225
|
biimtrrid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f /\ E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 227 |
226
|
expd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. u e. ( ( M Sat E ) ` N ) ( 1st ` u ) = f -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 228 |
202 227
|
sylbid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( f e. ( Fmla ` N ) -> ( E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 229 |
228
|
rexlimdv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) -> E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 230 |
196 229
|
orim12d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) -> ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) ) |
| 231 |
141 230
|
impbid |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) <-> ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) ) ) |
| 232 |
231
|
abbidv |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> { x | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) } = { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) |
| 233 |
33 232
|
eqtrd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } = { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) |
| 234 |
14 233
|
ineq12d |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( dom ( S ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) = ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) ) |
| 235 |
|
fmlasucdisj |
|- ( N e. _om -> ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) = (/) ) |
| 236 |
235
|
ad2antrr |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( ( Fmla ` suc N ) i^i { x | ( E. f e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) ( E. g e. ( Fmla ` suc N ) x = ( f |g g ) \/ E. i e. _om x = A.g i f ) \/ E. f e. ( Fmla ` N ) E. g e. ( ( Fmla ` suc N ) \ ( Fmla ` N ) ) x = ( f |g g ) ) } ) = (/) ) |
| 237 |
234 236
|
eqtrd |
|- ( ( ( N e. _om /\ ( M e. V /\ E e. W ) ) /\ Fun ( S ` suc N ) ) -> ( dom ( S ` suc N ) i^i dom { <. x , y >. | ( E. u e. ( ( S ` suc N ) \ ( S ` N ) ) ( E. v e. ( S ` suc N ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = B ) ) \/ E. u e. ( S ` N ) E. v e. ( ( S ` suc N ) \ ( S ` N ) ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = A ) ) } ) = (/) ) |