Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( a = (/) -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` (/) ) ) |
2 |
1
|
releqd |
|- ( a = (/) -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` (/) ) ) ) |
3 |
2
|
imbi2d |
|- ( a = (/) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) ) ) |
4 |
|
fveq2 |
|- ( a = b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` b ) ) |
5 |
4
|
releqd |
|- ( a = b -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` b ) ) ) |
6 |
5
|
imbi2d |
|- ( a = b -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) ) ) |
7 |
|
fveq2 |
|- ( a = suc b -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` suc b ) ) |
8 |
7
|
releqd |
|- ( a = suc b -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` suc b ) ) ) |
9 |
8
|
imbi2d |
|- ( a = suc b -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) |
10 |
|
fveq2 |
|- ( a = N -> ( ( M Sat E ) ` a ) = ( ( M Sat E ) ` N ) ) |
11 |
10
|
releqd |
|- ( a = N -> ( Rel ( ( M Sat E ) ` a ) <-> Rel ( ( M Sat E ) ` N ) ) ) |
12 |
11
|
imbi2d |
|- ( a = N -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` a ) ) <-> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` N ) ) ) ) |
13 |
|
relopabv |
|- Rel { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } |
14 |
|
eqid |
|- ( M Sat E ) = ( M Sat E ) |
15 |
14
|
satfv0 |
|- ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) |
16 |
15
|
releqd |
|- ( ( M e. V /\ E e. W ) -> ( Rel ( ( M Sat E ) ` (/) ) <-> Rel { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) |
17 |
13 16
|
mpbiri |
|- ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` (/) ) ) |
18 |
|
pm2.27 |
|- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` b ) ) ) |
19 |
|
simpr |
|- ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` b ) ) |
20 |
|
relopabv |
|- Rel { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } |
21 |
|
relun |
|- ( Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) <-> ( Rel ( ( M Sat E ) ` b ) /\ Rel { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
22 |
19 20 21
|
sylanblrc |
|- ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
23 |
14
|
satfvsuc |
|- ( ( M e. V /\ E e. W /\ b e. _om ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
24 |
23
|
ad4ant123 |
|- ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> ( ( M Sat E ) ` suc b ) = ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) |
25 |
24
|
releqd |
|- ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> ( Rel ( ( M Sat E ) ` suc b ) <-> Rel ( ( ( M Sat E ) ` b ) u. { <. x , y >. | E. u e. ( ( M Sat E ) ` b ) ( E. v e. ( ( M Sat E ) ` b ) ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) /\ y = ( ( M ^m _om ) \ ( ( 2nd ` u ) i^i ( 2nd ` v ) ) ) ) \/ E. i e. _om ( x = A.g i ( 1st ` u ) /\ y = { a e. ( M ^m _om ) | A. z e. M ( { <. i , z >. } u. ( a |` ( _om \ { i } ) ) ) e. ( 2nd ` u ) } ) ) } ) ) ) |
26 |
22 25
|
mpbird |
|- ( ( ( ( M e. V /\ E e. W ) /\ b e. _om ) /\ Rel ( ( M Sat E ) ` b ) ) -> Rel ( ( M Sat E ) ` suc b ) ) |
27 |
26
|
exp31 |
|- ( ( M e. V /\ E e. W ) -> ( b e. _om -> ( Rel ( ( M Sat E ) ` b ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) |
28 |
27
|
com23 |
|- ( ( M e. V /\ E e. W ) -> ( Rel ( ( M Sat E ) ` b ) -> ( b e. _om -> Rel ( ( M Sat E ) ` suc b ) ) ) ) |
29 |
18 28
|
syld |
|- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> ( b e. _om -> Rel ( ( M Sat E ) ` suc b ) ) ) ) |
30 |
29
|
com13 |
|- ( b e. _om -> ( ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` b ) ) -> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` suc b ) ) ) ) |
31 |
3 6 9 12 17 30
|
finds |
|- ( N e. _om -> ( ( M e. V /\ E e. W ) -> Rel ( ( M Sat E ) ` N ) ) ) |
32 |
31
|
com12 |
|- ( ( M e. V /\ E e. W ) -> ( N e. _om -> Rel ( ( M Sat E ) ` N ) ) ) |
33 |
32
|
3impia |
|- ( ( M e. V /\ E e. W /\ N e. _om ) -> Rel ( ( M Sat E ) ` N ) ) |