| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfv0fv.s |  |-  S = ( M Sat E ) | 
						
							| 2 |  | satfv0fun |  |-  ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` (/) ) ) | 
						
							| 3 | 1 | fveq1i |  |-  ( S ` (/) ) = ( ( M Sat E ) ` (/) ) | 
						
							| 4 | 3 | funeqi |  |-  ( Fun ( S ` (/) ) <-> Fun ( ( M Sat E ) ` (/) ) ) | 
						
							| 5 | 2 4 | sylibr |  |-  ( ( M e. V /\ E e. W ) -> Fun ( S ` (/) ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> Fun ( S ` (/) ) ) | 
						
							| 7 |  | fmla0 |  |-  ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } | 
						
							| 8 | 7 | eleq2i |  |-  ( X e. ( Fmla ` (/) ) <-> X e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) | 
						
							| 9 |  | eqeq1 |  |-  ( x = X -> ( x = ( i e.g j ) <-> X = ( i e.g j ) ) ) | 
						
							| 10 | 9 | 2rexbidv |  |-  ( x = X -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om X = ( i e.g j ) ) ) | 
						
							| 11 | 10 | elrab |  |-  ( X e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( X e. _V /\ E. i e. _om E. j e. _om X = ( i e.g j ) ) ) | 
						
							| 12 | 8 11 | bitri |  |-  ( X e. ( Fmla ` (/) ) <-> ( X e. _V /\ E. i e. _om E. j e. _om X = ( i e.g j ) ) ) | 
						
							| 13 |  | simpr |  |-  ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> X = ( i e.g j ) ) | 
						
							| 14 |  | goel |  |-  ( ( i e. _om /\ j e. _om ) -> ( i e.g j ) = <. (/) , <. i , j >. >. ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) <-> X = <. (/) , <. i , j >. >. ) ) | 
						
							| 16 |  | 2fveq3 |  |-  ( X = <. (/) , <. i , j >. >. -> ( 1st ` ( 2nd ` X ) ) = ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) ) | 
						
							| 17 |  | 0ex |  |-  (/) e. _V | 
						
							| 18 |  | opex |  |-  <. i , j >. e. _V | 
						
							| 19 | 17 18 | op2nd |  |-  ( 2nd ` <. (/) , <. i , j >. >. ) = <. i , j >. | 
						
							| 20 | 19 | fveq2i |  |-  ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = ( 1st ` <. i , j >. ) | 
						
							| 21 |  | vex |  |-  i e. _V | 
						
							| 22 |  | vex |  |-  j e. _V | 
						
							| 23 | 21 22 | op1st |  |-  ( 1st ` <. i , j >. ) = i | 
						
							| 24 | 20 23 | eqtri |  |-  ( 1st ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = i | 
						
							| 25 | 16 24 | eqtrdi |  |-  ( X = <. (/) , <. i , j >. >. -> ( 1st ` ( 2nd ` X ) ) = i ) | 
						
							| 26 | 25 | fveq2d |  |-  ( X = <. (/) , <. i , j >. >. -> ( a ` ( 1st ` ( 2nd ` X ) ) ) = ( a ` i ) ) | 
						
							| 27 |  | 2fveq3 |  |-  ( X = <. (/) , <. i , j >. >. -> ( 2nd ` ( 2nd ` X ) ) = ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) ) | 
						
							| 28 | 19 | fveq2i |  |-  ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = ( 2nd ` <. i , j >. ) | 
						
							| 29 | 21 22 | op2nd |  |-  ( 2nd ` <. i , j >. ) = j | 
						
							| 30 | 28 29 | eqtri |  |-  ( 2nd ` ( 2nd ` <. (/) , <. i , j >. >. ) ) = j | 
						
							| 31 | 27 30 | eqtrdi |  |-  ( X = <. (/) , <. i , j >. >. -> ( 2nd ` ( 2nd ` X ) ) = j ) | 
						
							| 32 | 31 | fveq2d |  |-  ( X = <. (/) , <. i , j >. >. -> ( a ` ( 2nd ` ( 2nd ` X ) ) ) = ( a ` j ) ) | 
						
							| 33 | 26 32 | breq12d |  |-  ( X = <. (/) , <. i , j >. >. -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) | 
						
							| 34 | 15 33 | biimtrdi |  |-  ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> ( ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) <-> ( a ` i ) E ( a ` j ) ) ) | 
						
							| 36 | 35 | rabbidv |  |-  ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) | 
						
							| 37 | 13 36 | jca |  |-  ( ( ( i e. _om /\ j e. _om ) /\ X = ( i e.g j ) ) -> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) | 
						
							| 38 | 37 | ex |  |-  ( ( i e. _om /\ j e. _om ) -> ( X = ( i e.g j ) -> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 39 | 38 | reximdva |  |-  ( i e. _om -> ( E. j e. _om X = ( i e.g j ) -> E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 40 | 39 | reximia |  |-  ( E. i e. _om E. j e. _om X = ( i e.g j ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) | 
						
							| 41 | 12 40 | simplbiim |  |-  ( X e. ( Fmla ` (/) ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) | 
						
							| 42 | 41 | 3ad2ant3 |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) | 
						
							| 43 |  | simp3 |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> X e. ( Fmla ` (/) ) ) | 
						
							| 44 |  | ovex |  |-  ( M ^m _om ) e. _V | 
						
							| 45 | 44 | rabex |  |-  { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } e. _V | 
						
							| 46 |  | eqeq1 |  |-  ( y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } -> ( y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } <-> { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) | 
						
							| 47 | 9 46 | bi2anan9 |  |-  ( ( x = X /\ y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) -> ( ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) <-> ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 48 | 47 | 2rexbidv |  |-  ( ( x = X /\ y = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) -> ( E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 49 | 48 | opelopabga |  |-  ( ( X e. ( Fmla ` (/) ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } e. _V ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 50 | 43 45 49 | sylancl |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } <-> E. i e. _om E. j e. _om ( X = ( i e.g j ) /\ { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) ) ) | 
						
							| 51 | 42 50 | mpbird |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) | 
						
							| 52 | 1 | satfv0 |  |-  ( ( M e. V /\ E e. W ) -> ( S ` (/) ) = { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) | 
						
							| 53 | 52 | eleq2d |  |-  ( ( M e. V /\ E e. W ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) <-> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) | 
						
							| 54 | 53 | 3adant3 |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) <-> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. { <. x , y >. | E. i e. _om E. j e. _om ( x = ( i e.g j ) /\ y = { a e. ( M ^m _om ) | ( a ` i ) E ( a ` j ) } ) } ) ) | 
						
							| 55 | 51 54 | mpbird |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) ) | 
						
							| 56 |  | funopfv |  |-  ( Fun ( S ` (/) ) -> ( <. X , { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } >. e. ( S ` (/) ) -> ( ( S ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) ) | 
						
							| 57 | 6 55 56 | sylc |  |-  ( ( M e. V /\ E e. W /\ X e. ( Fmla ` (/) ) ) -> ( ( S ` (/) ) ` X ) = { a e. ( M ^m _om ) | ( a ` ( 1st ` ( 2nd ` X ) ) ) E ( a ` ( 2nd ` ( 2nd ` X ) ) ) } ) |