| Step | Hyp | Ref | Expression | 
						
							| 1 |  | satfun |  |-  ( ( M e. V /\ E e. W ) -> ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) ) | 
						
							| 2 |  | ffvelcdm |  |-  ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) ) | 
						
							| 3 |  | fvex |  |-  ( ( ( M Sat E ) ` _om ) ` U ) e. _V | 
						
							| 4 | 3 | elpw |  |-  ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) <-> ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) ) | 
						
							| 5 |  | ssel |  |-  ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S e. ( M ^m _om ) ) ) | 
						
							| 6 |  | elmapi |  |-  ( S e. ( M ^m _om ) -> S : _om --> M ) | 
						
							| 7 | 5 6 | syl6 |  |-  ( ( ( ( M Sat E ) ` _om ) ` U ) C_ ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) | 
						
							| 8 | 4 7 | sylbi |  |-  ( ( ( ( M Sat E ) ` _om ) ` U ) e. ~P ( M ^m _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) | 
						
							| 9 | 2 8 | syl |  |-  ( ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) /\ U e. ( Fmla ` _om ) ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) | 
						
							| 10 | 9 | ex |  |-  ( ( ( M Sat E ) ` _om ) : ( Fmla ` _om ) --> ~P ( M ^m _om ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( ( M e. V /\ E e. W ) -> ( U e. ( Fmla ` _om ) -> ( S e. ( ( ( M Sat E ) ` _om ) ` U ) -> S : _om --> M ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( ( M e. V /\ E e. W ) /\ U e. ( Fmla ` _om ) /\ S e. ( ( ( M Sat E ) ` _om ) ` U ) ) -> S : _om --> M ) |