Step |
Hyp |
Ref |
Expression |
1 |
|
sbequ2 |
|- ( x = y -> ( [ y / x ] ph -> ph ) ) |
2 |
|
19.8a |
|- ( ( x = y /\ ph ) -> E. x ( x = y /\ ph ) ) |
3 |
2
|
ex |
|- ( x = y -> ( ph -> E. x ( x = y /\ ph ) ) ) |
4 |
1 3
|
syld |
|- ( x = y -> ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) ) |
5 |
4
|
sps |
|- ( A. x x = y -> ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) ) |
6 |
|
sb4b |
|- ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) ) |
7 |
|
equs4 |
|- ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) ) |
8 |
6 7
|
syl6bi |
|- ( -. A. x x = y -> ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) ) |
9 |
5 8
|
pm2.61i |
|- ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) |