Metamath Proof Explorer


Theorem sb3OLD

Description: Obsolete version of sb3 as of 21-Feb-2024. (Contributed by NM, 5-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sb3OLD
|- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) )

Proof

Step Hyp Ref Expression
1 equs5
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) )
2 sb2
 |-  ( A. x ( x = y -> ph ) -> [ y / x ] ph )
3 1 2 syl6bi
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) )