Metamath Proof Explorer


Theorem sb3bOLD

Description: Obsolete version of sb3b as of 21-Feb-2024. (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sb3bOLD
|- ( -. A. x x = y -> ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 sb1
 |-  ( [ y / x ] ph -> E. x ( x = y /\ ph ) )
2 sb3
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) )
3 1 2 impbid2
 |-  ( -. A. x x = y -> ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) )