| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbequ2 |
|- ( x = t -> ( [ t / x ] A. t ph -> A. t ph ) ) |
| 2 |
1
|
sps |
|- ( A. x x = t -> ( [ t / x ] A. t ph -> A. t ph ) ) |
| 3 |
|
axc11r |
|- ( A. x x = t -> ( A. t ph -> A. x ph ) ) |
| 4 |
|
ala1 |
|- ( A. x ph -> A. x ( x = t -> ph ) ) |
| 5 |
3 4
|
syl6 |
|- ( A. x x = t -> ( A. t ph -> A. x ( x = t -> ph ) ) ) |
| 6 |
2 5
|
syld |
|- ( A. x x = t -> ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) ) |
| 7 |
|
sb4b |
|- ( -. A. x x = t -> ( [ t / x ] A. t ph <-> A. x ( x = t -> A. t ph ) ) ) |
| 8 |
|
sp |
|- ( A. t ph -> ph ) |
| 9 |
8
|
imim2i |
|- ( ( x = t -> A. t ph ) -> ( x = t -> ph ) ) |
| 10 |
9
|
alimi |
|- ( A. x ( x = t -> A. t ph ) -> A. x ( x = t -> ph ) ) |
| 11 |
7 10
|
biimtrdi |
|- ( -. A. x x = t -> ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) ) |
| 12 |
6 11
|
pm2.61i |
|- ( [ t / x ] A. t ph -> A. x ( x = t -> ph ) ) |