Description: One direction of a simplified definition of substitution that unlike sb4b does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sb4e | |- ( [ y / x ] ph -> A. x ( x = y -> E. y ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 | |- ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) |
|
2 | equs5e | |- ( E. x ( x = y /\ ph ) -> A. x ( x = y -> E. y ph ) ) |
|
3 | 1 2 | syl | |- ( [ y / x ] ph -> A. x ( x = y -> E. y ph ) ) |