Metamath Proof Explorer


Theorem sb4e

Description: One direction of a simplified definition of substitution that unlike sb4b does not require a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Feb-2007) (New usage is discouraged.)

Ref Expression
Assertion sb4e
|- ( [ y / x ] ph -> A. x ( x = y -> E. y ph ) )

Proof

Step Hyp Ref Expression
1 sb1
 |-  ( [ y / x ] ph -> E. x ( x = y /\ ph ) )
2 equs5e
 |-  ( E. x ( x = y /\ ph ) -> A. x ( x = y -> E. y ph ) )
3 1 2 syl
 |-  ( [ y / x ] ph -> A. x ( x = y -> E. y ph ) )