| Step | Hyp | Ref | Expression | 
						
							| 1 |  | equsb1 |  |-  [ y / x ] x = y | 
						
							| 2 |  | sban |  |-  ( [ y / x ] ( x = y /\ ph ) <-> ( [ y / x ] x = y /\ [ y / x ] ph ) ) | 
						
							| 3 | 2 | simplbi2com |  |-  ( [ y / x ] ph -> ( [ y / x ] x = y -> [ y / x ] ( x = y /\ ph ) ) ) | 
						
							| 4 | 1 3 | mpi |  |-  ( [ y / x ] ph -> [ y / x ] ( x = y /\ ph ) ) | 
						
							| 5 |  | spsbe |  |-  ( [ y / x ] ( x = y /\ ph ) -> E. x ( x = y /\ ph ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( [ y / x ] ph -> E. x ( x = y /\ ph ) ) | 
						
							| 7 |  | hbs1 |  |-  ( [ y / x ] ph -> A. x [ y / x ] ph ) | 
						
							| 8 |  | simpr |  |-  ( ( x = y /\ ph ) -> ph ) | 
						
							| 9 | 8 | a1i |  |-  ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> ph ) ) | 
						
							| 10 |  | simpl |  |-  ( ( x = y /\ ph ) -> x = y ) | 
						
							| 11 | 10 | a1i |  |-  ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> x = y ) ) | 
						
							| 12 |  | sbequ1 |  |-  ( x = y -> ( ph -> [ y / x ] ph ) ) | 
						
							| 13 | 12 | com12 |  |-  ( ph -> ( x = y -> [ y / x ] ph ) ) | 
						
							| 14 | 9 11 13 | syl6c |  |-  ( E. x ( x = y /\ ph ) -> ( ( x = y /\ ph ) -> [ y / x ] ph ) ) | 
						
							| 15 | 7 14 | exlimexi |  |-  ( E. x ( x = y /\ ph ) -> [ y / x ] ph ) | 
						
							| 16 | 6 15 | impbii |  |-  ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |