Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sb6a | |- ( [ y / x ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcov | |- ( [ y / x ] [ x / y ] ph <-> [ y / x ] ph ) | |
| 2 | sb6 | |- ( [ y / x ] [ x / y ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) | |
| 3 | 1 2 | bitr3i | |- ( [ y / x ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) |