Description: Equivalence for substitution. (Contributed by NM, 2-Jun-1993) (Proof shortened by Wolf Lammen, 23-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | sb6a | |- ( [ y / x ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcov | |- ( [ y / x ] [ x / y ] ph <-> [ y / x ] ph ) |
|
2 | sb6 | |- ( [ y / x ] [ x / y ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) |
|
3 | 1 2 | bitr3i | |- ( [ y / x ] ph <-> A. x ( x = y -> [ x / y ] ph ) ) |